Пара слов о «полярности» переменного напряжения

Добавлено 21 августа 2020 в 13:58

Комплексные числа полезны для анализа цепей переменного тока, поскольку они предоставляют удобный метод символьной записи сдвига фаз между параметрами переменного тока, такими как напряжение и ток.

Однако большинству людей нелегко понять эквивалентность абстрактных векторов и реальных параметров схемы. Ранее в данной главе мы видели, как источники переменного напряжения задаются значениями напряжения в комплексной форме (амплитуда и угол фазы), а также обозначением полярности.

Поскольку у переменного тока нет параметра «полярности», как у постоянного тока, эти обозначения полярности и их связь с углом фазы могут вводить в заблуждение. Данный раздел написан с целью, прояснить некоторые из этих вопросов.

Напряжение, по своей сути, – относительная величина. Когда мы измеряем напряжение, у нас есть выбор, как подключить вольтметр или другой измерительный прибор к источнику напряжения, поскольку есть две точки, между которыми существует разность потенциалов, и два измерительных щупа у прибора, которые необходимо подключить.

В цепях постоянного тока мы явно обозначаем полярность источников напряжения и падений напряжения, используя символы "+" и "-", а также используем измерительные щупы с цветовой маркировкой (красный и черный). Если цифровой вольтметр показывает отрицательное постоянное напряжение, мы знаем, что его измерительные щупы подключены «обратно» напряжению (красный провод подключен к "-", а черный провод – к "+").

Полярность батарей обозначается специфичными для них символами: короткая линия батареи всегда является отрицательной (-) клеммой, а длинная линия – всегда положительной (+):

Рисунок 1 Общепринятое обозначение полярности батареи
Рисунок 1 – Общепринятое обозначение полярности батареи

Хотя было бы математически правильно представить напряжение батареи в виде отрицательного значения с обозначением обратной полярности, но это было бы явно необычно:

Рисунок 2 Совершенно нестандартное обозначение полярности
Рисунок 2 – Совершенно нестандартное обозначение полярности

Интерпретация таких обозначений могла бы быть проще, если бы обозначения полярности "+" и "-" рассматривались как контрольные точки для измерительных щупов вольтметра, "+" означал бы «красный», а "-" означал бы «черный». Вольтметр, подключенный к указанной выше батарее красным щупом к нижней клемме и черным щупом к верхней клемме, действительно будет указывать отрицательное напряжение (-6 вольт).

На самом деле, эта форма обозначения и интерпретации не так уж необычна, как вы могли подумать: она часто встречается в задачах анализа цепей постоянного тока, где знаки полярности "+" и "-" сначала рисуются согласно обоснованному предположению, а затем интерпретируются как правильные или «обратные» в соответствии с математическим знаком рассчитанного значения.

Однако в цепях переменного тока мы не имеем дело с «отрицательными» значениями напряжения. Вместо этого мы описываем, в какой степени одно напряжение совпадает или не совпадает с другим по фазе: т.е. по сдвигу по времени между двумя сигналами. Мы никогда не описываем переменное напряжение как отрицательное по знаку, потому что возможность полярной записи позволяет векторам указывать в противоположных направлениях.

Если одно переменное напряжение прямо противоположно другому переменному напряжению, мы просто говорим, что одно напряжение на 180° не совпадает по фазе с другим.

Тем не менее, напряжение между двумя точками является относительным, и у нас есть выбор, как подключить прибор для измерения напряжения между этими двумя точками. Математический знак показаний вольтметра постоянного напряжения имеет значение только в контексте подключений его измерительных щупов: к какой клемме подключен красный щуп, а к какой клемме подключен черный щуп.

Кроме того, угол фазы переменного напряжения имеет значение только в контексте знания, какая из этих двух точек считаются «опорной». Поэтому, чтобы дать заявленному углу фазы точку отсчета, на схемах часто указываются обозначения полярности "+" и "-" на клеммах переменного напряжения.

Показания вольтметра при подключении измерительных щупов

Давайте рассмотрим эти принципы более наглядно. Во-первых, связь между подключением измерительных щупов со знаком на показаниях вольтметра при измерении постоянного напряжения:

Рисунок 3 Цвета измерительных щупов служат ориентиром для интерпретации знака (+ или -) показаний измерителя
Рисунок 3 – Цвета измерительных щупов служат ориентиром для интерпретации знака (+ или -) показаний измерительного прибора

Математический знак на дисплее цифрового вольтметра постоянного напряжения имеет значение только в контексте подключения его измерительных проводов. Рассмотрим возможность использования вольтметра постоянного напряжения для определения того, складываются ли два источника постоянного напряжения друг с другом или вычитаются друг из друга, предполагая, что на обоих источниках нет маркировки их полярности.

Использование вольтметра для измерения на первом источнике:

Рисунок 4 Положительные (+) показания указывают, что черный это (-), красный это (+)
Рисунок 4 – Положительные (+) показания указывают, что черный – это (-), красный – это (+)

Этот результат первого измерения +24 на левом источнике напряжения говорит нам, что черный провод вольтметра действительно подключен к отрицательной клемме источника напряжения № 1, а красный провод вольтметра действительно подключен к положительной клемме. Таким образом, мы узнаем, что источник №1 – это батарея, включенная следующим образом:

 

Рисунок 5 Полярность источника 24 В
Рисунок 5 – Полярность источника 24 В

Измерение другого неизвестного источника напряжения:

Рисунок 6 Отрицательные (-) показания указывают, что черный это (+), красный это (-)
Рисунок 6 – Отрицательные (-) показания указывают, что черный – это (+), красный – это (-)

Второе измерение вольтметром показало отрицательные (-) 17 вольт, что говорит нам о том, что черный измерительный щуп на самом деле подключен к положительной клемме источника напряжения № 2, а красный измерительный провод подключен к отрицательной клемме. Таким образом, мы узнаем, что источник №2 – это батарея, включенная в противоположную сторону:

Рисунок 7 Полярность источника 17 В
Рисунок 7 – Полярность источника 17 В

Для любого, знакомого с постоянным током, должно быть очевидно, что эти две батареи противодействуют друг другу. Противоположные напряжения, априори, вычитаются друг из друга, поэтому, чтобы получить общее напряжение на обоих батареях, мы вычитаем 17 вольт из 24 вольт и получаем 7 вольт.

Но мы могли бы изобразить два источника в виде невзрачных прямоугольников, помеченных точными значениями напряжений, полученными с помощью вольтметра, и маркировкой полярности, указывающей на положение измерительных щупов вольтметра:

Рисунок 8 Показания вольтметра, как они отображались на нем
Рисунок 8 – Показания вольтметра, как они отображались на нем

Важность маркировки полярности

В соответствии со схемой на рисунке 8 (выше) обозначения полярности (которые указывают на положение измерительного щупа вольтметра) указывают, что источники складываются друг с другом. Источники напряжения складываются друг с другом, чтобы сформировать общее напряжение, поэтому мы добавляем 24 вольта к -17 вольтам, чтобы получить 7 вольт: всё еще правильный ответ.

Если мы позволим маркировке полярности определять наше решение, складывать или вычитать значения напряжения (независимо от того, представляют ли эти маркировки полярности истинную полярность или только положение измерительного провода вольтметра), и включим математические знаки этих значений напряжений в наши расчеты, результат всегда будет правильным.

Опять же, маркировка полярности служит ориентиром для размещения математических знаков значений напряжений в правильном контексте.

То же самое верно и для переменного напряжения, за исключением того, что математический знак заменяется углом фазы. Чтобы связать друг с другом несколько переменных напряжений с разными углами фазы, нам нужна маркировка полярности, чтобы обеспечить систему отсчета для углов фаз этих напряжений.

Возьмем, к примеру, следующую схему:

Рисунок 9 Угол фазы заменяет знак plus-minus
Рисунок 9 – Угол фазы заменяет знак ±

Маркировка полярности показывает, что эти два источника напряжения складываются друг с другом, поэтому для определения общего напряжения на резисторе мы должны сложить значения напряжения 10 В 0° и 6 В ∠ 45° вместе, чтобы получить 14,861 В 16,59 °.

Однако было бы вполне приемлемо представить 6-вольтовый источник как 6 В 225°, с обратной маркировкой полярности, и при этом получить такое же общее напряжение:

Рисунок 10 Переключение проводов вольтметра на источнике 6 В изменяет угол фазы на 180
Рисунок 10 – Переключение проводов вольтметра на источнике 6 В изменяет угол фазы на 180°

6 В 45° с минусом слева и плюсом справа – это точно то же самое, что 6 В ∠ 225 ° с плюсом слева и минусом справа: изменение маркировки полярности идеально дополняет добавление 180° к значению угла фазы:

Рисунок 11 Изменение полярности добавляет 180 к углу фазы
Рисунок 11 – Изменение полярности добавляет 180° к углу фазы

В отличие от источников постоянного напряжения, где полярность определяется символами из линий, у переменных напряжений нет собственного обозначения полярности. Следовательно, любые знаки полярности должны быть включены в качестве дополнительных символов на схему, и не существует единственного «правильного» способа их размещения.

Однако они должны коррелировать с заданными углами фаз, чтобы представлять истинное фазовое соотношение одного напряжения с другими напряжениями в цепи.

Резюме

  • Иногда в принципиальных схемах у переменных напряжений, чтобы обеспечить систему отсчета для углов их фаз, обозначается полярность.

Теги

ВекторКомплексные числаОбучениеПеременный токФазаЦепи переменного тока

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.