Практическое использование инструментальных (измерительных) усилителей

Добавлено30 марта 2021 в 22:21

В данной статье приводится базовый обзор инструментальных (измерительных) усилителей, за которым следуют несколько реальных применений, в которых можно найти эту схему.

Зачем использовать инструментальные усилители?

Когда я учился в колледже, один из моих преподавателей сравнил работу инженера-электронщика с разнорабочим с поясом с инструментами, набитым оборудованием. Успешный разнорабочий будет стремиться иметь широкий набор инструментов и знать, как и когда использовать каждый из них. Точно так же инженер-электронщик имеет свой «пояс с инструментами» из знаний и применений компонентов, схемотехники и способов решения задач. Столкнувшись с задачей, успешный инженер будет знать, какие инструменты использовать для достижения цели проектирования.

Один из таких инструментов, который должен иметь каждый инженер, – это инструментальные (или измерительные) усилители. Инструментальные усилители играют жизненно важную роль во многих областях электротехники; все, от промышленной автоматики для тяжелых условий эксплуатации до прецизионных медицинских устройств, используют инструментальные усилители в своих интересах. Прежде чем мы перейдем ко всем применениям, мы должны кратко рассмотреть конструкцию инструментальных усилителей, и почему их нужно использовать вместо обычных операционных усилителей, которые обычно дешевле.

Давайте сначала взглянем на классическую схему дифференциального усилителя:

Рисунок 1 Дифференциальный усилитель
Рисунок 1 – Дифференциальный усилитель

Такой конфигурации может быть достаточно для некоторых дифференциальных применений; он может усиливать сигнал с измерительного моста и иметь хороший CMRR (КОСС, коэффициент ослабления синфазного сигнала), но у него есть несколько проблем. Во-первых, мы можем ясно видеть, что входные импедансы не приближаются к бесконечности; фактически входное сопротивление на инвертирующем входе относительно низкое. Входные сопротивления в этой схеме не совпадают, и иногда входные сопротивления инвертирующего и неинвертирующего входов могут сильно различаться. Эта схема также требует очень тщательного согласования резисторов и согласования с импедансом источника. Мы, конечно, могли бы увеличить входной импеданс, сделав резисторы обратной связи очень большими, но при номинале 1 МОм для резисторов R1 и R2 потребуется, чтобы R3 и R4 были равны 100 МОм для достижения коэффициента усиления хотя бы 100; а для очень слабых сигналов обычно требуется больший коэффициент усиления. Использование резисторов большого номинала также создает новые проблемы. Резисторы с большим сопротивлением создают шум, и их очень сложно подобрать с высокой точностью; кроме того, резисторы большого номинала могут вызвать появление паразитной емкости, которая отрицательно скажется на CMRR на высоких частотах.

Решением было бы использовать перед каждым входом неинвертирующие буферы, но мы всё равно хотели бы добиться более высокого коэффициента усиления. Взгляните на инструментальный усилитель, показанный ниже.

Рисунок 2 Инструментальный усилитель
Рисунок 2 – Инструментальный усилитель

Два буферных усилителя обеспечивают практически бесконечное входное сопротивление и усиление, а дифференциальный усилитель обеспечивает дополнительное усиление и несимметричный выход. В результате получается схема с очень высоким CMRR, высоким коэффициентом усиления и входным сопротивлением порядка 1010 Ом.

Применение в измерениях

Одно из применений этих схем – измерение сигналов датчиков и преобразователей. Инструментальные усилители превосходно извлекают очень слабые сигналы из шумной среды; поэтому они часто используются в схемах, в которых используются датчики, измеряющие физические параметры. Для измерения давления тензодатчики часто используются с инструментальными усилителями, поскольку тензодатчики обычно «висят в воздухе», то есть они не имеют прямого соединения с землей. А инструментальный усилитель может усиливать сигналы без привязки к земле, потому что он усиливает только разницу между двумя входами. Тензодатчики часто используются в схеме моста Уитстона, который является очень распространенным примером формирования дифференциального сигнала без привязки к земле; данная схема изображена ниже, где R2 – изменяющийся элемент, создающий дифференциальное напряжение между узлами C и B.

Рисунок 3 Мост Уитстона
Рисунок 3 – Мост Уитстона

Со схемой инструментального усилителя можно работать практически с любым датчиком; термопары, фотодиоды, термисторы, даже обычный кремниевый диод можно использовать в качестве простого датчика температуры, поместив его в схему моста, создающую входной сигнал для инструментального усилителя. Когда диод нагревается, прямое напряжение падает, создавая дифференциальный сигнал, который можно усилить. Причина, по которой схема моста так важна для датчиков и приборов, – это синфазный шум; схема с обычным операционным усилителем и датчиком на его входах будет работать как усилитель, но будет очень шумной. По этой причине инструментальные усилители так часто используются перед входами АЦП. Любой PIC-контроллер или Arduino имеет входы, которые можно настроить как аналоговые входы, но это несимметричные входы, которые не могут ослаблять синфазные сигналы. Инструментальный усилитель может извлекать и усиливать слабые сигналы датчиков из зашумленной среды и подавать чистый несимметричный выходной сигнал на АЦП. Это важно при работе с микроконтроллерами, так как любой дополнительный шум вызовет неустойчивое преобразование в дополнение к потере ценных битов АЦП.

Применение в биомедицине

Если к вам в больнице когда-либо подключали какое-либо электронное оборудование для снятия с вас показаний, то вы были подключены к датчикам, управляемым инструментальным усилителем. Схемы инструментальных усилителей находят широкое применение почти в каждом медицинском устройстве, как из-за вышеупомянутых преимуществ, так и из-за того, что инструментальные усилители также являются прецизионными усилительными устройствами.

Для инструментальных усилителей не требуются внешние резисторы обратной связи; вместо этого они содержат резисторы, изготовленные в самой микросхеме с использованием лазерной подгонки, и используют только один внешний настроечный резистор для настройки коэффициента усиления, что избавляет от несовпадения номиналов резисторов. Это позволяет устройству устанавливать точное значение коэффициента усиления в зависимости от требований схемы. Большинство биомедицинских датчиков, такие как датчики артериального давления, ультразвуковые преобразователи, поляризованные и неполяризованные электроды и датчики радиационной термометрии, имеют очень высокий импеданс и генерируют очень слабые сигналы.

Эти датчики требуют очень высокого импеданса, обеспечиваемого инструментальным усилителем, поскольку характеристики биопотенциальных электродов могут подвергаться воздействию нагрузки, что может вызвать искажение сигнала. Кроме того, усилители должны иметь высокий уровень подавления шума; больницы – одна из самых шумных сред, в которых датчик должен будет работать, с сотнями беспроводных устройств, работающих поблизости, и постоянно присутствующим фоном 50 Гц от света и электросети. Эти неустойчивые шумовые сигналы часто на несколько порядков больше, чем сигнал от биопотенциального электрода, который сам по себе составляет всего несколько милливольт. Легко узнаваемое медицинское применение таких усилителей – это электрокардиографы или аппараты ЭКГ, которые отслеживают изменения в дипольном электрическом поле сердца. Ниже приведен пример применения инструментального усилителя Analog Device серии AD82X в ЭКГ из руководства по применению.

Рисунок 4 Применение инструментального усилителя Analog Device серии AD82X в ЭКГ
Рисунок 4 – Применение инструментального усилителя Analog Device серии AD82X в ЭКГ

Все три инструментальных усилителя снимают разность сигналов с электродов датчиков, а последний электрод «F» действует как земля. Для этого устройства используются измерительные усилители, поскольку биопотенциальные электроды улавливают огромное количество шума от линий электросети, который необходимо ослаблять, чтобы устройство могло давать точные показания.

Применение в промышленности

Инструментальные усилители также находят применение в промышленной автоматизации, где многие системы используют электрический ток для пороговых измерений и удаленного управления системами. В начале двадцатого века промышленные комплексы использовали давление воздуха для удаленного управления машинами, используя 3-15 фунтов на квадратный дюйм в качестве полного диапазона, где давление 3 фунта на квадратный дюйм представляют 0%, система включена, а давление 15 фунтов на квадратный дюйм – 100%. Всё, что меньше 3 фунтов на квадратный дюйм, означало, что система отключена или нестабильна, и вызывало тревогу. Сейчас промышленным стандартом является использование постоянного тока, аналогичного давлению воздуха, с диапазоном от 4 до 20 мА. Между прочим, если вы когда-нибудь задумывались, что это за кнопка на многих наших мультиметрах с надписью «4-20 мА», теперь вы знаете. В этом применении ток измеряется так, чтобы два удаленно подключенных устройства могли обмениваться данными, даже если у них разные заземления. Чтобы это работало, выходной усилитель линии передачи должен работать очень линейно по отношению к входному сигналу и подавлять любые помехи, вызванные несовпадением потенциалов земель; идеальный кандидат для этого – инструментальный усилитель. Ниже представлена упрощенная схема измерительного усилителя, используемого в этом применении, – схема, известная как передатчик токовой петли.

Рисунок 5 Передатчик токовй петли
Рисунок 5 – Передатчик токовй петли

На этом рисунке U1 представляет линию передачи с потерями, а R2 – устройство на приемной стороне, которое преобразует ток в некоторую команду или значение измерения.

В дополнение к этому применению в промышленности, контроллеры больших двигателей также включают в себя измерительные усилители. Обычно используемые для измерения тока в H-мосте, входы инструментального усилителя, не имеющие привязки к земле, идеально подходят для драйверов двигателей, поскольку двигатели обычно электрически не связаны с землей.

Заключение

Инструментальные усилители используются почти во всех областях электроники; они выполняют важную роль в схемах, нуждающихся в преимуществах высокого входного импеданса с хорошим коэффициентом усиления, обеспечивая при этом подавление синфазных помех и полностью дифференциальные входы. С таким широким распространением это устройство должно быть в арсенале инструментов у каждого инженера.

Теги

ДатчикДля начинающихИзмерениеИзмерительный мостИзмерительный усилительИнструментальный усилительИнтерфейс токовая петля 4-20 мАМост УитстонаПередатчик токовой петлиСхемотехникаТензодатчикЭлектрокардиограф