Как разработать простой, управляемый напряжением, двунаправленный источник тока
В данной статье представлен высокопроизводительный источник тока, для которого требуется всего несколько легкодоступных компонентов.
Когда всё, что вы делаете, это рисуете схему, источники напряжения и тока одинаково легко реализовать. Однако, войдя в реальный мир схемотехники, мы постепенно понимаем, что создание более или менее стабильного тока по какой-то причине намного сложнее, чем создание более или менее стабильного напряжения. Однако это не меняет того факта, что источники тока иногда очень полезны, и хорошо, что умные инженеры создали множество практических схем источников тока.
Краткий обзор источника тока
В данной статье я хочу поделиться с вами интересным источником тока, который я нашел в старой заметке по применению, опубликованной Linear Technology. Однако сначала я должен упомянуть другие типы источников тока, которые обсуждаются в существующих статьях на RadioProg.
Если вы хотите перейти на уровень транзисторов, у нас есть статьи о токовом зеркале на MOSFET транзисторах и токовом зеркале на биполярных транзисторах. Если вы предпочитаете использовать операционные усилители, источник тока Хауленда вырабатывает ток, управляемый напряжением, и требует только одного операционного усилителя и четырех резисторов.
Если вам не нравится работать с дискретными транзисторами и (по какой-то причине) у вас нет под рукой операционных усилителей, возможно, вы захотите преобразовать один из ваших линейных стабилизаторов напряжения в источник тока.
Источник тока Джима Уильямса
Это ни в коем случае не официальное название схемы, и я, конечно, не хочу иметь в виду, что это единственный источник тока, который когда-либо проектировал Джим Уильямс – я не удивлюсь, если узнаю, что он придумал полдюжины инновационных, высокопроизводительных схем источников тока. Тем не менее, он является автором заметки о применении, и я не знаю, как еще назвать эту схему.
Как показано на схеме ниже, для этого источника тока требуются две микросхемы усилителей и несколько пассивных элементов.
LT1006 – это типовой прецизионный операционный усилитель, а LT1102 – высокоточный инструментальный усилитель. Информация по применению была опубликована в 1991 году, так что это старые микросхемы. Я использовал LT1006 и LT1102 в своем моделировании (которое будет обсуждаться в следующей статье), чтобы убедиться, что в моделировании всё соответствует исходной конструкции, и, фактически, интернет-магазины по-прежнему классифицирует оба этих компонента как «производимые». Тем не менее, я рекомендую вам поэкспериментировать с некоторыми более новыми (и предположительно более производительными) заменами этих устаревших микросхем.
В следующем списке представлены некоторые характеристики схемы источника тока Джима Вильямса.
- Она управляется напряжением и является двунаправленной – величина и направление тока нагрузки определяются величиной и полярностью входного напряжения.
- В качестве опорной точки она использует землю; одна сторона сопротивления нагрузки подключена непосредственно к земле.
- Как показывает формула, включенная в рисунок выше, на величину тока также влияет R, то есть номинал резистора, помещенного между входными выводами инструментального усилителя.
- Если для R вы используете резистор очень высокой точности, и погрешность, вносимая этим компонентом, незначительна, начальная точность и температурная стабильность схемы соответствуют точности коэффициента усиления и температурному коэффициенту инструментального усилителя.
- Схема имеет хорошую стабильность и совместима с быстрыми изменениями входного напряжения.
Принцип работы схемы
Ключом к работе этого источника тока является использование инструментального усилителя. Измеряя напряжение на фиксированном сопротивлении, включенном последовательно с нагрузкой, мы можем генерировать выходной ток, на который не влияет значение сопротивления нагрузки.
Ниже представлена моя попытка пошагового объяснения того, как работает эта схема.
- Операционный усилитель (A1) работает в схеме с отрицательной обратной связью. Наличие инструментального усилителя (A2) в тракте обратной связи не меняет того факта, что петля обратной связи замкнута.
- Наличие отрицательной обратной связи позволяет нам использовать упрощение о виртуальном коротком замыкании. Таким образом, выход A2 должен быть равен входному напряжению.
- Виртуальное короткое замыкание не возникает из ниоткуда; скорее, виртуальное короткое замыкание вызвано действием выхода операционного усилителя. Поскольку A2 имеет коэффициент усиления 100, выход A1 будет делать всё необходимое, чтобы напряжение на R было равно входному напряжению, деленному на 100.
- Поскольку R – фиксированное сопротивление, и поскольку напряжение на R всегда пропорционально входному напряжению, мы знаем из закона Ома, что ток через R всегда будет пропорционален входному напряжению.
- Поскольку нагрузка включена последовательно с резистором R, выходной ток всегда пропорционален входному напряжению, независимо от сопротивления нагрузки (конечно, в определенных пределах – например, вы не сможете обеспечить ток 10 мА через нагрузку 1 МОм, конечно если вы не сможете найти усилители, которые принимают напряжение питания до 10 000 В или около того).
- Конденсатор и другой резистор определяют частотную характеристику схемы, и я предполагаю, что их значения были выбраны таким образом, чтобы создать необходимый запас по фазе.
Заключение
Мы рассмотрели простую схему двунаправленного источника тока, которая построена на основе высокоточного операционного усилителя и высокоточного инструментального усилителя.
В следующей статье мы воспользуемся моделированием LTspice для дальнейшего изучения работы и производительности этой схемы.