Нужен стабилизатор тока? Используйте стабилизатор напряжения!

Добавлено 9 ноября 2020 в 03:11

В данной статье показано, как линейные стабилизаторы напряжения могут быть полезны и в приложениях стабилизации тока.

Линейные стабилизаторы напряжения, также (несколько неточно) называемые LDO, являются одними из наиболее распространенных электронных компонентов. Например, LM7805 приобрел почти легендарный статус и непременно был бы включен в зал славы интегральных микросхем, если бы такой зал существовал. В примечании к применению от Texas Instruments хорошо сказано: микросхемы линейных стабилизаторов «настолько просты в использовании», что они настолько «надежны» и «недороги», что обычно являются одними из самых дешевых компонентов в проекте.

Действительно, линейные стабилизаторы удобны, эффективны и универсальны. И на самом деле они могут быть даже более универсальными, чем вы думаете. Схемы линейных стабилизаторов построены на использовании отрицательной обратной связи, как показано на следующей диаграмме, взятой из того же примечания к применению:

Рисунок 1 Схема линейного стабилизатора напряжения
Рисунок 1 – Схема линейного стабилизатора напряжения

Отрицательная обратная связь – очень полезная вещь, особенно в сочетании с источником фиксированного тока, как в случае со стабилизатором напряжения LT3085 от Linear Tech. На следующей диаграмме показана внутренняя структура этого устройства.

Рисунок 2 Схема взята из технического описания LT3085
Рисунок 2 – Схема взята из технического описания LT3085

В предыдущей статье (исследование преобразователя напряжения в ток) мы исследовали использование отрицательной обратной связи в преобразователях напряжения в ток, которые могут точно контролировать яркость светодиода. Если вы знакомы с этими методами, для вас не будет сюрпризом, что для получения стабилизированного тока мы можем использовать стабилизатор напряжения, такой как LT3085.

В данной статье мы рассмотрим простой светодиодный драйвер на базе LT3085.

Линейный стабилизатор против операционного усилителя

Прежде чем мы проанализируем саму схему, мы должны обсудить преимущества подхода с линейным стабилизатором для получения стабилизированного тока. Методы с операционным усилителем, представленные в предыдущих статьях, несомненно, эффективны, так зачем возиться с новым методом?

Вот некоторые моменты, которые следует учитывать:

  • Большинство операционных усилителей не рассчитано на высокий выходной ток, поэтому схема на основе линейного стабилизатора позволяет избежать ограничений по выходному току типовых операционных усилителей.
  • Микросхема стабилизатора имеют защиту от перегрева.
  • Линейные стабилизаторы обеспечивают бо́льшую устойчивость к большим входным напряжениям и высокой рассеиваемой мощности.
  • Возможно, вы сможете найти один компонент, который подойдет практически для всех ваших требований по стабилизации напряжения и получения тока. Моим наименее любимым аспектом проектирования схем/печатных плат является создание запасов новых компонентов, поэтому я стараюсь использовать детали, которые могут пригодиться для будущих проектов.

LT3085 как стабилизатор напряжения

Давайте вкратце рассмотрим работу стабилизации напряжения LT3085. Эта информация поможет нам понять реализацию источника тока.

Ниже типовая конфигурация стабилизатора напряжения:

Рисунок 3 Схема взята из технического описания LT3085
Рисунок 3 – Схема взята из технического описания LT3085

Источник тока (10 мкА) создает напряжение на Rнастр. Это напряжение появляется на неинвертирующем входе усилителя. Действие отрицательной обратной связи гарантирует, что напряжение на инвертирующем входе равно напряжению на неинвертирующем входе; другими словами, выходное напряжение равно напряжению на Rнастр. Выходной конденсатор необходим для обеспечения стабильности, а транзистор, подключенный к выходу усилителя, будет выглядеть очень знакомым, если вы читали мою статью «Как буферизовать выход операционного усилителя для получения более высокого тока».

От напряжения к току

Назначение стабилизатора напряжения – обеспечить неизменное выходное напряжение независимо от сопротивления нагрузки. Другими словами, идеальный стабилизатор будет выдавать напряжение, которое (например) равно 3,3 В при подключении к нагрузке 100 кОм и ровно 3,3 В при подключении к нагрузке 5 Ом. Что, конечно, меняется, так это ток нагрузки, который полностью определяется сопротивлением нагрузки (потому что напряжение на нагрузке не изменяется).

Что же произойдет, если мы дадим идеальному стабилизатору напряжения фиксированное сопротивление нагрузки? Если напряжение нагрузки не меняется и сопротивление нагрузки не меняется, и если закон Ома всё еще действует, то ток тоже не изменится.

Вуаля: источник тока.

На следующей диаграмме показано, как использовать LT3085 для решения задач, связанных с управлением светодиодами.

Рисунок 4 Схема взята из технического описания LT3085
Рисунок 4 – Схема взята из технического описания LT3085

Вот как это работает:

  • Внутренний источник тока посылает 10 мкА через R1, генерируя напряжение, которое будет равно выходному напряжению (т.е. напряжению на R2).
  • Это выходное напряжение постоянно (потому что сопротивление R1 и значение силы тока внутреннего источника тока постоянны).
  • Это постоянное выходное напряжение будет создавать неизменный ток через R2, потому что сопротивление R2 постоянно.
  • Инвертирующий вход усилителя не выдает ток, поэтому почти весь ток R2 идет от положительного источника питания через транзистор, подключенный к выходу усилителя. (Я говорю «почти», потому что ток эмиттера биполярного транзистора представляет собой сумму тока базы и тока коллектора, но ток базы намного меньше тока коллектора.)
  • Светодиод включен последовательно с коллектором биполярного транзистора, и поэтому ток через светодиод фиксирован и (почти) равен току, протекающему через R2.

Ток через светодиод можно изменить, изменив значение R1 или R2; как показано в следующем уравнении, ток через светодиод – это просто значение силы тока внутреннего источника тока, умноженное на отношение R1 к R2.

\[I_{LED}=\frac{((10 \ мкА)\times R1)}{R2}=10 \ мкА \times \frac{R1}{R2}\]

Я бы назвал это довольно удобной схемой: процесс проектирования чрезвычайно прост, и требуется лишь несколько компонентов. Если вы замените один из резисторов потенциометром, результатом станет высокоточный светодиодный драйвер с регулируемым током с широким диапазоном входных напряжений и защитой от перегрева, который может обеспечивать ток до 500 мА.

И, конечно, эта схема не ограничивается светодиодами; вы могли бы так же легко использовать ее, скажем, с резистивным нагревательным элементом. Это позволит вам, несмотря на колебания напряжения питания, генерировать постоянное тепло (потому что P = I2R).

Заключение

Мы обсудили простой, но высокопроизводительный источник тока на базе микросхемы стабилизатора напряжения от Linear Tech. Я предполагаю, что аналогичные схемы на стабилизаторах доступны и у других производителей.

Мне нравится всегда включать моделирование SPICE в статьи, но в данном случае это казалось действительно ненужным. Однако прежде чем я написал статью, я проверил, что в LTspice действительно есть компонент LT3085 (в папке "[PowerProducts]"). Поэтому, если вы захотите исследовать эту схему дальше, то сможете легко это сделать.

Теги

LED / СветодиодLED драйвер / Светодиодный драйверЛинейный стабилизаторСтабилизатор напряженияСтабилизатор токаСтабилизация токаСхемотехника

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.