Источник тока Хауленда

Добавлено 15 ноября 2020 в 13:35

Источник тока Хауленда, изобретенный профессором Брэдфордом Хаулендом из Массачусетского технологического института в начале 1960-х годов, состоит из операционного усилителя и симметричного резисторного моста и выдает ток в любом направлении. Рассмотрим его подробнее.

Источник тока Хауленда, показанный на рисунке 1a, представляет собой схему, которая принимает входное напряжение vвх, преобразует его в выходной ток iвых = Avвх, с A в качестве коэффициента крутизны, и выдает iвых в нагрузку, независимо от напряжения vнагр, вырабатываемого самой нагрузкой. Чтобы увидеть, как он работает, добавим на схему обозначения, как на рисунке 1b, и применим закон Кирхгофа и закон Ома.

Рисунок 1 (a) Источник тока Хауленда. (b) Необходимые обозначения для анализа его схемы
Рисунок 1 – (a) Источник тока Хауленда. (b) Необходимые обозначения для анализа его схемы

\[i_{вых} = i_1 + i_2 = \frac{v_{вх} - v_{нагр}}{R_1} + \frac{v_{усил} - v_{нагр}}{R_2} \qquad (1)\]

Операционный усилитель вместе с R3 и R4, относительно vнагр, образует неинвертирующий усилитель, что дает

\[v_{усил} = \left( 1 + \frac{R_4}{R_3} \right) v_{нагр} \qquad (2)\]

Подставляя vусил в уравнение 1 и упрощая формулу, мы получаем довольно очевидную зависимость iвых.

\[i_{вых}=Av_{вх}-\frac{v_{нагр}}{R_{вых}} \qquad (3)\]

где A – коэффициент крутизны, в А/В (ампер на вольт),

\[A = \frac{1}{R_1} \qquad (4)\]

а Rвых – выходное сопротивление цепи к нагрузке,

\[R_{вых} = \frac{R_2}{\frac{R_2}{R_1} - \frac{R_4}{R_3}} \qquad (5)\]

Чтобы сделать iвых независимым от vнагр, мы должны обеспечить Rвых → ∞ или условие баланса моста.

\[\frac{R_4}{R_3} = \frac{R_2}{R_1} \qquad (6)\]

Взгляните на пример на рисунке 2 и проследите за строками в таблице, как операционный усилитель регулирует i2 с помощью vусил, чтобы обеспечить неизменный ток iвых независимо от vнагр.

Рисунок 2 (a) Источник тока 2 мА и (b) его внутренняя работа для различных значений vнагр (напряжения в вольтах, токи в миллиамперах; отрицательное значение тока означает, что ток течет в направлении, противоположном стрелке)
Рисунок 2 – (a) Источник тока 2 мА и (b) его внутренняя работа для различных значений vнагр (напряжения в вольтах, токи в миллиамперах; отрицательное значение тока означает, что ток течет в направлении, противоположном стрелке)

С полярностью Vопор, как показано, источник подает ток iвых на нагрузку. Изменение полярности Vопор приведет к «приему» тока из нагрузки. Обратите внимание, что для правильной работы источника vнагр всегда должно быть ограничено линейным диапазоном работы операционного усилителя. Если операционный усилитель перейдет в режим насыщения, источник перестанет работать должным образом.

Влияние несовпадения сопротивлений

На практике мост, вероятно, будет разбалансирован из-за погрешностей сопротивления, поэтому Rвых, вероятно, будет меньше бесконечности. Обозначая погрешности используемых сопротивлений буквой p, мы увидим, что знаменатель D в уравнении 5 максимизируется, когда R2 и R3 максимизированы, а R1 и R4 минимизированы. Для p << 1 запишем

\[D_{max} = \frac{R_2(1+p)}{R_1(1-p)} - \frac{R_4(1-p)}{R_3(1+p)} \cong \frac{R_2}{R_1} [(1+2p)-(1-2p)] \cong \frac{R_2}{R_1} 4p\]

Здесь мы включили соотношение уравнения 6, применили приближение

\[\frac{1}{1 \mp p} \cong 1 \pm p\]

и проигнорировали квадратичные члены в p. Подстановка в уравнение 5 дает

\[R_{вых(min)} = \frac{R_2}{D_{max}} \cong \frac{R_1}{4p} \qquad (7)\]

Например, использование сопротивлений 1% (p = 0,01) в схеме на рисунке 2a может снизить Rвых с ∞ до 1000/(4×0,01) = 25 кОм, таким образом, согласно уравнению 3 делая iвых зависимым от vнагр. Если мост несбалансирован в направлении, противоположном указанному выше, то наихудшее условие для Rвых составляет –25 кОм. Таким образом, в зависимости от несовпадения, Rвых может лежать в диапазоне от +25 кОм до ∞ до –25 кОм.

Рисунок 3 (a) Использование потенциометра R<sub>п</sub> для балансировки резисторного моста. (b) Настройка калибровки.
Рисунок 3 – (a) Использование потенциометра Rп для балансировки резисторного моста. (b) Настройка калибровки.

Для повышения производительности мы должны либо использовать сопротивления с более низкой погрешностью, либо сбалансировать мост с помощью потенциометра Rп, как на рисунке 3a. Чтобы откалибровать схему, соедините вход с землей, как показано на рисунке 3b, и используйте амперметр A. Сначала переведите переключатель в положение «земля» и, если необходимо, снижайте до нуля входное напряжение смещения операционного усилителя, пока амперметр не покажет ноль. Затем установите переключатель на известное напряжение, например 5 В, и регулируйте Rп, пока амперметр снова не покажет ноль. Предполагая, что iвых с vнагр = 5 В равен iвых с vнагр = 0 В, мы делаем iвых независимым от vнагр, что фактически приводит Rвых к бесконечности согласно уравнению 3.

Влияние неидеальности операционных усилителей

Коэффициент подавления синфазного сигнала

На практике операционный усилитель чувствителен к синфазному входному напряжению, особенность, которая моделируется небольшим внутренним напряжением смещения, последовательно соединенным с неинвертирующим входом. В случае источника тока Хауленда это напряжение смещения может быть выражено как vнагр/CMRR, где CMRR (common-mode rejection ratio) – коэффициент подавления синфазного сигнала, указанный в техническом описании операционного усилителя. Как видно по рисунку 4a, уравнение 1 всё еще сохраняется, но уравнение 2 изменяется на

\[v_{усил} = \left(1+\frac{R_4}{R_3}\right) \times \left( v_{нагр} + \frac{v_{нагр}}{CMRR} \right) = \left(1+\frac{R_2}{R_1} \right) \times v_{нагр} \times \left(1+\frac{1}{CMRR} \right)\]

Подставляя эту формулу в уравнение 1, решая его для iвых и помещая iвых в уравнение 3, получаем

\[R_{вых} = (R_1 || R_2) \times CMRR \qquad (8)\]

Например, использование операционного усилителя с CMRR = 60 дБ (= 1000) в приведенном выше примере снизит Rвых с ∞ до (103||103)×1000 = 500 кОм. При модификации схемы, показанной на рисунке 3b, мы можем использовать потенциометр для компенсации совокупного влияния дисбаланса моста, а также небесконечного CMRR.

Коэффициент усиления при разомкнутой петле отрицательной обратной связи

До сих пор мы предполагали, что операционный усилитель имеет бесконечный коэффициент усиления без обратной связи. Коэффициент усиления \(a\) реального операционного усилителя конечен, поэтому давайте теперь посмотрим, как он влияет на поведение схемы.

Рисунок 4 Схемы для исследования влияния (a) небесконечного коэффициента подавления синфазного сигнала и (b) небесконечного коэффициента усиления без обратной связи
Рисунок 4 – Схемы для исследования влияния (a) небесконечного коэффициента подавления синфазного сигнала и (b) небесконечного коэффициента усиления без обратной связи

Что касается рисунка 4b, теперь у нас есть

\[v_{усил} = a \left(v_{нагр}-\frac{R_3}{R_3+R_4}v_{усил} \right)\]

Решение для vусил, подстановка в уравнение 1, решение для iвых и подстановка iвых в уравнение 3 дают

\[R_{вых} = (R_1||R_2) \times \left( 1+\frac{a}{1+\frac{R_2}{R_1}} \right) \qquad (9)\]

Например, использование операционного усилителя с усилением постоянного напряжения 100 дБ (=100000 В/В) снизит Rвых с ∞ до (103||103)×(1 + 100000/2) ≅ 25 МОм. При модификации схемы, показанного на рисунке 3b, мы можем использовать потенциометр для компенсации совокупного влияния дисбаланса моста, небесконечного CMRR и небесконечного усиления по постоянному напряжению при разомкнутой петле отрицательной обратной связи, и поднять Rвых как можно ближе к ∞.

Однако когда мы увеличиваем рабочую частоту, коэффициент усиления \(a\) падает по мере увеличения частоты, что приводит к прогрессивному ухудшению Rвых. Например, у операционного усилителя с коэффициентом усиления по постоянному напряжению 100 дБ произведение коэффициента усиления и ширины полосы пропускания равно 1 МГц, зависимость его коэффициента усиления без отрицательной обратной связи от частоты (при условии однополюсной характеристики) будет выглядеть следующим образом:

Однополюсная частотная характеристика операционного усилителя 1 МГц с усилением разомкнутого контура постоянного тока 100 дБ.

Рисунок 5 Однополюсная частотная характеристика операционного усилителя на 1 МГц с коффициентом усиления постоянного напряжения 100 дБ при разомкнутой петле обратной связи
Рисунок 5 – Однополюсная частотная характеристика операционного усилителя на 1 МГц с коэффициентом усиления постоянного напряжения 100 дБ при разомкнутой петле обратной связи

Таким образом, коэффициент усиления \(a\) падает до 60 дБ (= 1000 В/В) на частоте 1 кГц, а значение Rвых упадет до 500×(1 + 1000/2) ≅ 250 кОм. На 10 кГц Rвых падает до 500×(1 + 100/2) ≅ 25 кОм и так далее.

Теги

CMRR / КОСС (коэффициент ослабления синфазного сигнала)GBP (произведение коэффициента усиления на ширину полосы пропускания)Источник токаИсточник тока ХаулендаОУ (операционный усилитель)Управление с помощью напряжения

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.