Преобразование напряжения сигнала в ток
В измерительных схемах сигналы постоянного тока часто используются в качестве аналоговых представлений физических измерений, таких как температура, давление, поток, вес и движение. Чаще всего сигналам постоянного тока отдается предпочтение по сравнению с сигналами постоянного напряжения, поскольку сигналы тока точно равны по величине во всем контуре схемы, несущей ток от источника (измерительного устройства) до нагрузки (индикатор, устройство записи или контроллер), тогда как сигналы напряжения в аналогичной схеме могут изменяться от одного конца к другому из-за резистивных потерь проводников. Кроме того, приборы для измерения тока обычно имеют низкие импедансы (в том время как приборы для измерения напряжения имеют высокие импедансы), что дает инструментам измерения тока бо́льшую устойчивость к электрическим помехам.
Чтобы использовать ток как аналоговое представление физической величины, мы должны иметь какой-то способ генерации точной величины тока в сигнальной схеме. Но как мы создадим точный токовый сигнал, когда не можем знать сопротивление контура? Ответ заключается в использовании усилителя, предназначенного для поддержания тока на заданном значении, прикладывая столько много или столько мало напряжения, сколько необходимо для цепи нагрузки, чтобы поддерживать это заданное значение тока. Такой усилитель выполняет функцию источника тока. Операционный усилитель с отрицательной обратной связью является идеальным кандидатом на такую задачу:
Предполагается, что входное напряжение этой схемы исходит от какого-либо устройства физического преобразователя / усилительного устройства, откалиброванного для получения 1 вольта для 0% при физическом измерении и 5 вольт для 100% при физическом измерении. Стандартный диапазон аналогового токового сигнала составляет от 4 мА до 20 мА, что означает от 0% до 100% диапазона измерений, соответственно. При входе 5 вольт резистор (точный) 250 Ом будет иметь приложенное к нему напряжение 5 вольт, что приведет к току 20 мА в схеме большого контура (с Rнагр). Не имеет значения, чему равно сопротивление Rнагр, и чему равно сопротивление проводов в этом большом контуре, если операционный усилитель имеет напряжение питания, достаточно высокое для выдачи напряжения, которое необходимо для получения 20 мА, протекающих через Rнагр. Резистор 250 Ом устанавливает соотношение между входным напряжением и выходным током, в этом случае создавая равнозначность 1–5 В на входе / 4–20 мА на выходе. Если бы мы преобразовывали входной сигнал 1-5 вольт и выходной сигнал 10-50 мА (более старый, устаревший измерительный стандарт промышленности), вместо этого мы использовали бы точный резистор 100 Ом.
Другим названием этой схемы является «усилитель крутизны». В электронике крутизна представляет собой математический коэффициент, равный изменению тока, деленному на изменение напряжения (ΔI/ΔV), и измеряется в сименсах (См), в тех же единицах, что используются для выражения проводимости (математически, величина, обратная сопротивлению: ток/напряжение). В данной схеме коэффициент крутизны фиксируется величиной резистора 250 Ом, что дает линейную связь выходной_ток/входное_напряжение.
Резюме
- В промышленности токовые сигналы постоянного тока часто используются вместо сигналов постоянного напряжения как аналоговые представления физических величин. Ток в последовательной цепи абсолютно одинаков во всех точках этой схемы независимо от сопротивления проводов, тогда как напряжение в аналогичной схеме может изменяться от одного конца к другому из-за сопротивления проводов, что делает токовые сигналы более точными для передачи сигнала от «передающего» прибора до «принимающего» прибора.
- Сигналы напряжения относительно легко получить непосредственно на устройствах преобразователей, тогда как точные токовые сигналы нет. Для «преобразования» сигнала напряжения в токовый сигнал можно довольно просто использовать операционные усилители. В этом режиме операционный усилитель буде выводить любое напряжение, необходимое для поддержания тока через сигнальную цепь в правильном значении.