IGBT транзисторы

Добавлено 17 сентября 2018 в 21:34
Биполярный транзистор с изолированным затвором (IGBT)
Биполярный транзистор с изолированным затвором (IGBT)

Из-за своих изолированных затворов IGFET транзисторы всех типов имеют чрезвычайно высокий коэффициент усиления по току: не может быть устойчивого тока затвора, если нет замкнутой цепи затвора, в которой электроны могут непрерывно протекать. Таким образом, единственный ток, который мы видим на выводе затвора полевого транзистора с изолированным затвором, – это ток во время временного перехода (кратковременный импульс), который может потребоваться для зарядки емкости затвора и смещения обедненной области, когда транзистор переключается из состояния «открыт» в состояние «закрыт», и наоборот.

Этот высокий коэффициент усиления по току, по-видимому, дает технологии IGFET решающее преимущество по сравнению с биполярными транзисторами в плане управления большими токами. Если для управления большим током используется биполярный транзистор, то схемой управления в соответствии с коэффициентом β должен быть обеспечен существенный ток базы. Для примера, для того, чтобы мощный биполярный транзистор с β=20 проводил ток коллектора 100 ампер, ток базы должен быть не менее 5 ампер, что само по себе является значительной величиной тока для небольших дискретных или интегральных схем управления:

Ключ на биполярном транзисторе
Ключ на биполярном транзисторе

Было бы хорошо с точки зрения схемы управления иметь силовые транзисторы с высоким коэффициентом усиления по току так, чтобы для управления током нагрузки требовалось гораздо меньше управляющего тока. Разумеется, мы можем использовать транзисторные пары Дарлингтона, чтобы увеличить усиление по току, но для такого устройства всё равно будет требоваться гораздо больший управляющий ток, чем для эквивалентной схемы на мощном полевом транзисторе с изолированным затвором:

Ключ на паре Дарлингтона
Ключ на паре Дарлингтона
Ключ на полевом транзисторе с изолированным затвором
Ключ на полевом транзисторе с изолированным затвором

Однако, к сожалению, полевые транзисторы с изолированным затвором имеют проблемы с управлением высокими токами: они, как правило, демонстрируют большее падение напряжения сток-исток, чем падение напряжения коллектор-эмиттер у насыщенного биполярного транзистора. Это большее падение напряжения соответствует более высокой рассеиваемой мощности при той же величине тока нагрузки, что ограничивает полезность полевых транзисторов с изолированным затвором в качестве мощных устройств. Хотя некоторые специализированные конструкции, такие как так называемый VMOS транзистор, были разработаны для минимизации этого недостатка, биполярный транзистор по-прежнему превосходит их по своей способности коммутировать большие токи.

Интересное решение этой дилеммы использует лучшие качества полевых транзисторов с изолированным затвором в сочетании с лучшими качествами биполярных транзисторов в одном устройстве, называемом биполярный транзистор с изолированным затвором (БТИЗ, англ. Insulated-gate bipolar transistor, IGBT). Также известный как MOSFET с биполярным режимом, полевой транзистор с модуляцией проводимости (Conductivity-Modulated Field-Effect Transistor, COMFET) или просто транзистор с изолированным затвором (Insulated-Gate Transistor, IGT), он эквивалентен паре Дарлингтона из полевого транзистора с изолированным затвором и биполярного транзистора:

Биполярный транзистор с изолированным затвором (IGBT) (N-канальный)
Биполярный транзистор с изолированным затвором (IGBT) (N-канальный)

По сути, полевой транзистор с изолированным затвором управляет током базы биполярного транзистора, который управляет током основной нагрузки между коллектором и эмиттером. Таким образом, получается чрезвычайно высокий коэффициент усиления по току (поскольку изолированный затвор IGFET транзистора практически не потребляет ток от схемы управления), и при этом падение напряжения коллектор-эмиттер в режиме полной проводимости ниже, чем у обычного биполярного транзистора.

Одним из недостатков IGBT транзистора по сравнению с обычным биполярным транзистором является его более медленное время выключения. Относительно быстроты переключения и способности работать с большими токами, победить биполярный транзистор сложно. Более быстрое время выключения для IGBT транзистора может быть достигнуто путем определенных изменений в конструкции, но только за счет более высокого падения напряжения между коллектором и эмиттером в режиме насыщения. Однако IGBT транзистор в приложениях управления большими мощностями обеспечивает хорошую альтернативу и полевым транзисторам с изолированным затвором, и биполярным транзисторам.

Оригинал статьи:

Теги

IGBT / БТИЗ транзистор (биполярный транзистор с изолированным затвором)IGFET / МДП транзистор (полевой транзистор с изолированным затвором)Биполярный транзисторОбучениеПара ДарлингтонаПолевой транзисторТранзисторный ключЭлектроника

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.