Понятие отражения и стоячих волн в проектировании радиочастотных схем

Добавлено 4 июня 2018 в 17:00

Проектирование высокочастотных схем должно учитывать два важных, хотя и несколько таинственных явления: отражения и стоячие волны.

Из нашего опыта с другими областями науки мы знаем, что волны связаны с особыми типами поведения. Световые волны преломляются, когда перемещаются из одной среды (например, воздух) в другую (например, стекло). Водные волны дифрагируют, когда сталкиваются с лодками или большими скалами. Звуковые волны интерферируют, что приводит к периодическим изменениям громкости (так называемые «биения»).

Электрические волны также подвержены поведению, которое мы обычно не связываем с электрическими сигналами. Однако общее отсутствие знакомства с волновой природой электричества не удивительно, потому что во многих схемах эти эффекты незначительны или не существуют. Инженер из цифровой или низкочастотной аналоговой схемотехники может работать в течение многих лет и успешно разрабатывать много схем, не получая глубокого понимания волновых эффектов, которые становятся заметными в высокочастотных схемах.

Как обсуждалось в предыдущей статье, соединение, которое подвержено особому поведению высокочастотного сигнала называется линией передачи. Влияние линии передачи существенно только тогда, когда длина соединения составляет, по меньшей мере, одну четверть длины волны сигнала; таким образом, нам не нужно беспокоиться о свойствах волн, если мы не работаем с высокими частотами или очень длинными соединениями.

Отражение

Отражение, рефракция, дифракция, интерференция – все эти классические волновые поведения применимы к электромагнитному излучению. Но на данный момент мы по-прежнему имеем дело с электрическими сигналами, то есть сигналами, которые еще не были преобразованы антенной в электромагнитное излучение, и, следовательно, нам нужно заняться только двумя из них: отражением и интерференцией.

Волна, движущаяся вдоль струны, испытывает отражение, когда достигает физического барьера
Волна, движущаяся вдоль струны, испытывает отражение, когда достигает физического барьера

Аналогия с водной волной

Отражения возникают, когда волна сталкивается с неоднородностью. Представьте себе, что буря привела к тому, что большие волны воды распространяются через нормально спокойную гавань. Эти волны в конечном итоге сталкиваются с твердой каменной стеной. Мы интуитивно знаем, что эти волны отразятся от каменной стены и будут распространяться назад в гавань. Тем не менее, мы также интуитивно знаем, что водные волны, разбивающиеся о пляж, редко приводят к значительному отражению энергии, возвращающейся в океан. В чем разница?

Волны переносят энергию. Когда волны воды распространяются через открытую воду, эта энергия просто перемещается. Однако когда волна достигает неоднородности, плавное движение энергии прерывается; в случае пляжа или скальной стены распространение волн уже невозможно. Но что происходит с энергией, передаваемой волной? Она не может исчезнуть; она должна быть либо поглощена, либо отражена. Каменная стена не поглощает энергию волны, поэтому происходит отражение – энергия продолжает распространяться в волновой форме, но в противоположном направлении. Однако пляж позволяет рассеивать энергию волны более постепенным и естественным образом. Пляж поглощает энергию волны, и поэтому происходит минимальное отражение.

От воды к электронам

Электрические схемы также представляют собой неоднородности, которые влияют на распространение волн; в этом контексте критическим параметром является импеданс. Представьте себе электрическую волну, движущуюся по линии передачи; это эквивалентно водной волне в середине океана. Волна и связанная с ней энергия плавно распространяется от источника к нагрузке. В конце концов, электрическая волна достигает своего назначения: антенны, усилителя и т.д.

Неоднородности в электрической схеме
Неоднородности в электрической схеме

Из предыдущей статьи мы знаем, что максимальная передача мощности происходит, когда величина импеданса нагрузки равна величине импеданса источника. (В этом контексте «импеданс источника» также может относиться к характеристическому сопротивлению линии передачи.) При согласованных импедансах действительно нет неоднородности, так как нагрузка может поглощать всю энергию волны. Но если импедансы не совпадают, поглощается только часть энергии, а оставшаяся энергия отражается в виде электрической волны, движущейся в противоположном направлении.

На количество отраженной энергии влияет серьезность рассогласования между импедансами источника и нагрузки. Два наихудших сценария – это разомкнутая цепь и короткое замыкание, соответствующие бесконечному импедансу нагрузки и нулевому импедансу нагрузки соответственно. Эти два случая представляют полную неоднородность; никакая энергия не может быть поглощена, и, следовательно, отражается вся энергия.

Рассогласование импедансов
Рассогласование импедансов

Важность согласования

Если вы участвовали в радиочастотном проектировании или тестировании, вы знаете, что согласование импеданса является распространенной темой обсуждений. Теперь мы понимаем, что импедансы должны быть согласованы, чтобы предотвратить отражения. Но зачем так сильно беспокоиться об отражениях?

Первая проблема – просто эффективность. Если у нас есть усилитель мощности, подключенный к антенне, мы не хотим, чтобы половина выходной модности отражалась обратно в усилитель. Ведь цель состоит в том, чтобы генерировать электрическую энергию, которая может быть преобразована в электромагнитное излучение. В общем, мы хотим переместить мощность из источника в нагрузку, а это значит, что отражения должны быть минимальны.

Вторая проблема немного более тонкая. Непрерывный сигнал, передаваемый по линии передачи на несогласованный импеданс нагрузки, приведет к непрерывному отраженному сигналу. Эти падающие и отраженные волны проходят друг к другу, идя в противоположных направлениях. Интерференция приводит к появлению стоячей волны, то есть стационарной волновой форме, равной сумме падающей и отраженной волн. Эта стоячая волна на самом деле создает изменения пиковой амплитуды вдоль физической длины кабеля; определенные места имеют более высокую пиковую амплитуду, а в других местах пиковая амплитуда более низкая.

Стоячая волна
Стоячая волна

Стоячие волны приводят к напряжениям, которые выше, чем исходное напряжение передаваемого сигнала, и в некоторых случаях этот эффект является достаточно сильным, чтобы нанести физическое повреждение кабелям и компонентам.

Резюме

  • Электрические волны подвержены отражению и интерференции.
  • Волны воды отражаются, когда достигают физического препятствия, такого как каменная стена. Аналогичным образом, электрическое отражение возникает, когда сигнал переменного тока сталкивается с неоднородностью импеданса.
  • Мы можем предотвратить отражение путем согласования импеданса нагрузки с характеристическим сопротивлением линии передачи. Это позволит нагрузке поглощать энергию волны.
  • Отражения являются проблемой, поскольку они уменьшают количество энергии, которое может быть передано от источника к нагрузке.
  • Отражения также приводят к появлению стоячих волн; высокоамплитудные участки стоячей волны могут повредить компоненты или кабели.

Теги

Входной импедансВыходной импедансИмпедансОтражениеОтраженная волнаСогласование импедансаСтоячая волна

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.