Введение в диоды и выпрямители
Диод – это электрическое устройство, которое позволяет току проходить через него в одном направлении с гораздо большей легкостью, чем в другом. Наиболее распространенным типом диодов в современной схемотехнике является полупроводниковый диод, хотя существуют и другие диодные технологии. Условное обозначение полупроводниковых диодов на электрических схемах показано на рисунке ниже. Термин «диод» обычно используется для небольших сигнальных устройств, I ≤ 1 А. Термин выпрямитель используется для мощных устройств, I > 1 А.
Если поместить диод в простую цепь между батареей и лампой, он либо разрешит, либо запретит протекание тока через лампу, в зависимости от полярности приложенного напряжения (рисунок ниже).
Когда полярность батареи такова, что электроны могут протекать через диод, то говорится, что на диод подано прямое смещение. И наоборот, когда батарея подключена «наоборот», и диод блокирует протекание тока, говорится, что на диод подано обратное смещение. Диод может рассматриваться как выключатель: «замкнут» при прямом смещении и «разомкнут» при обратном смещении.
Как ни странно, направление «стрелки» на условном обозначении диода указывает в сторону, противоположную направлению потока электронов. Это так потому, что условное обозначение было придумано инженерами, которые в основном используют традиционное обозначение тока на своих схемах, показывающее электрический ток, как поток зарядов от положительной (+) стороны источника напряжения к отрицательной (-) стороне. Это соглашение справедливо для всех условных обозначений полупроводниковых приборов, обладающих «стрелками»: стрелка указывает в направлении, разрешенном для обычного тока, и противоположном направлению, разрешенному для потока электронов.
Поведение диода аналогично поведению гидравлического устройства, называемого обратным клапаном. Обратный клапан позволяет протекать потоку жидкости через него только в одном направлении (рисунок ниже).
Обратные клапаны являются устройствами, управляемыми давлением: они открыты и разрешают поток, если давление через них имеет «полярность», правильную для открытия затвора (в показанной аналогии давление жидкости справа должно быть выше, чем слева). Если давление соответствует противоположной «полярности», разница давлений через обратный клапан закроет и будет удерживать затвор так, что не будет никакого потока.
Как и обратные клапаны, диоды являются устройствами, управляемыми «давлением» (напряжением). Основная разница между прямым и обратным смещениями заключается полярности напряжения, падающего на диоде. Давайте подробнее рассмотрим показанную ранее простую схему, состоящую из батареи, диода и лампы. На этот раз изучив падения напряжения на различных компонентах (рисунок ниже).
Диод, смещенный в прямом направлении, проводит ток, и на нем падает небольшое напряжение, оставляя большую часть напряжения батареи на лампе. Если полярность батареи изменить, то на диод будет подано обратное смещение, и на нем будет падать всё напряжение батареи, не оставляя ничего для лампы. Если мы рассмотрим диод как самостоятельный выключатель (замкнут в режиме прямого смещения и разомкнут в режиме обратного смещения), это поведение обретает смысл. Наиболее существенная отличие от выключателя заключается в том, что в режиме пропускания тока на диоде падает гораздо большее напряжение по сравнению с обычным механическим выключателем (0,7 вольта против десятков милливольт).
Это падение напряжения при прямом смещении, демонстрируемое диодом, обусловлено действием обедненной области, образованной P-N переходом под действием приложенного напряжения. Если к полупроводниковому диоду не приложено никакое напряжение, существует тонкая обедненная область вокруг области P-N перехода, предотвращающая протекание тока (рисунок ниже (a)). Обедненная область почти лишена носителей заряда и действует как диэлектрик:
Условное обозначение диода показано на рисунке выше (b) таким образом, что анод (указывающий конец) соответствует полупроводнику P-типа на (a). Полоса катода, не указывающий конец, на (b) соответствует материалу N-типа на (a). Также отметим, что полоса на реальном компоненте (c) соответствует катоду на условном обозначении.
Если на P-N переход подается напряжение обратного смещения, это расширяет обедненную область, увеличивая сопротивление протеканию тока через диод (рисунок ниже).
И наоборот, если на P-N переход подано напряжение прямого смещения, обедненная область разрушается, становясь тоньше. Диод оказывает меньшее сопротивление протеканию через него тока. Для устойчивого протекания тока через диод, обедненная область в нем должна быть полностью разрушена приложенным напряжением. Для этого необходимо определенное минимальное напряжение, называемое прямым напряжением, как показано на рисунке ниже.
Для кремниевых диодов типовое значение прямого напряжения составляет 0,7 вольта. Для германиевых диодов прямое напряжение составляет всего 0,3 вольта. На номинальное значение прямого напряжение диода влияет химический состав его P-N перехода, поэтому кремниевые и германиевые диоды обладают такими разными значениями прямого напряжения. Прямое падение напряжения остается приблизительно постоянным в широком диапазоне токов, протекающих через диод, а это означает, что падение напряжения на диоде не похоже на падение напряжения на резисторе или даже обычном (замкнутом) выключателе. Для наиболее упрощенного анализа схемы падение напряжения на диоде в режиме пропускания тока можно считать постоянным, равным номинальному значению и не связанным с величиной тока.
На самом деле, прямое падение напряжения является более сложным. Уравнение, приведенное ниже, описывает точный ток через диод, учитывая падение напряжения на переходе, температуру перехода и несколько физических констант. Это уравнение наиболее известно, как уравнение Шокли для диода:
\[I_D = I_S ( e^{qV_D / NkT} - 1)\]
где
- ID – ток, проходящий через диод, в амперах;
- IS – ток насыщения диода, в амперах;
- e – постоянная Эйлера (~2,718281828);
- q – заряд электрона (1,6 × 10-19 кулона);
- VD – напряжение на диоде, в вольтах;
- N – коэффициент «неидеальности» или «эмиссии» (обычно равен от 1 до 2);
- k – постоянная Больцмана (1,38 × 10-23);
- T – температура перехода в Кельвинах.
Значение kT/q описывает напряжение, создаваемое внутри P-N перехода из-за воздействия температуры и называемое тепловым напряжением, или Vt, перехода. При комнатной температуре оно составляет примерно 26 милливольт. Зная это, и предполагая, что коэффициент «неидеальности» равен 1, мы можем упростить уравнение Шокли для диода и переписать его так:
\[I_D = I_S ( e^{V_D / 0,026} - 1)\]
где
- ID – ток, проходящий через диод, в амперах;
- IS – ток насыщения диода, в амперах;
- e – постоянная Эйлера (~2,718281828);
- VD – напряжение на диоде, в вольтах.
Для анализа простых схем с диодами вам не нужно знать уравнение Шокли для диода. Просто знайте, что падение напряжение на диоде в режиме пропускания тока изменятеся с величиной протекающего через диод тока, но это изменение достаточно мало в широком диапазоне значений тока. Именно поэтому многие учебники просто говорят, что падение напряжение на полупроводниковом диоде в режиме пропускания тока остается постоянным на уровне 0,7 вольта для кремниевых диодов и 0,3 вольта для германиевых диодов. Тем не менее, некоторые схемы намеренно используют свойственную P-N переходу экспоненциальную зависимость тока от напряжения и, таким образом, могут быть поняты только в контексте данного уравнения. Кроме того, поскольку температура является одной из составляющих уравнения Шокли для диода, P-N переход с прямым смещением может быть также использован в качестве устройства, чувствительного к температуре, работа которого может быть понята только при понимании идеи этой математической связи.
Диод с обратным смещением предотвращает протекание через него тока, из-за расширенной обедненной области. В действительности, небольшой ток всё-таки может пройти и проходит через диод с обратным смещением. Данный ток называется током утечки и может быть проигнорирован в большинстве случаев. Возможность диода выдерживать напряжения обратного смещения ограничено, как у любого диэлектрика. Если приложенное напряжение обратного смещения становится слишком большим, диод будет испытывать состояние, известное как пробой (рисунок ниже), которое обычно для диода разрушительно. Значение максимального напряжения обратного смещения известно как максимальное обратное напряжение и может быть получено из данных, предоставляемых производителем. Как и прямое напряжение, значение максимального обратного напряжения диода зависит от температуры; только отличие заключается в том, что максимальное обратное напряжение увеличивается с увеличением температуры и уменьшается при охлаждении диода – поведение, в точности противоположное поведению прямого напряжения.
Как правило, значение максимального обратного напряжения типового выпрямительного диода составляет не менее 50 вольт при комнатной температуре. Диоды со значениями максимального обратного напряжения в тысячи вольт также доступны.
Подведем итоги
- Диод представляет собой электрический компонент, действующий для тока, как односторонний клапан.
- Прикладывание к диоду напряжения таким образом, что диод начинает пропускать ток, называется прямым смещением.
- Прикладывание к диоду напряжения таким образом, что диод перестает пропускать ток, называется обратным смещением.
- Падение напряжение на проводящем диоде с прямым смещением называется прямым напряжением. Прямое напряжение диода лишь в незначительной степени зависит от изменений прямого тока и температуры и фиксируется с помощью химического состава P-N перехода.
- Кремниевые диоды имеют прямое напряжение около 0,7 вольт.
- Германиевые диоды имеют прямое напряжение около 0,3 вольт.
- Максимальное напряжение обратного смещения, которое диод може выдержать без «разрушения», называется максимальным обратным напряжением.