Тиристор SCR (управляемый кремниевый выпрямитель)

Добавлено 8 октября 2018 в 20:57

Динисторы (диоды Шокли) и тиристоры SCR (Silicon Controlled Rectifiers, управляемые кремниевые выпрямители)

Динисторы (диоды Шокли) – это довольно любопытные устройства, но довольно ограниченные в применении. Однако их полезность может быть расширена путем оснащения их другим средством отпирания. При этом каждый из них становится настоящим усилительным устройством (только если в режиме отпирания/запирания), и мы называем их кремниевыми управляемыми выпрямителями (silicon-controlled rectifier) или SCR тиристорами.

Тиристор SCR (silicon-controlled rectifier, кремниевый управляемый выпрямитель), или просто тринистор
Тиристор SCR (silicon-controlled rectifier, кремниевый управляемый выпрямитель), или просто тринистор

Развитие от динистора до тринистора достигается с помощью одного небольшого дополнения, фактически не более чем третьего подключения к существующей структуре PNPN (рисунок ниже).

Тиристор SCR (управляемый выпрямитель, тринистор)
Тиристор SCR (управляемый выпрямитель, тринистор)

Проводимость управляемых выпрямителей SCR (тринисторов)

Если управляющий электрод тринистора остается висящим в воздухе (неподключенным), он ведет себя точно так же, как динистор (диод Шокли). Он может быть отперт напряжением переключения или превышением критической скорости нарастания напряжения между анодом и катодом, всё как у динистора. Запирание осуществляется за счет уменьшения тока до тех пор, пока один или оба внутренних транзистора не упадут в режим отсечки, всё как у динистора. Однако, поскольку управляющий вывод подключается непосредственно к базе нижнего транзистора, он может использоваться как альтернативное средство отпирания тиристора SCR. Прикладывая небольшое напряжение между управляющим электродом и катодом, нижний транзистор будет открываться результирующим тока базы, что приведет к тому, что верхний транзистор будет проводить ток, а затем запитывать базу нижнего транзистора, поэтому он больше не будет нуждаться в активации напряжением управляющего электрода. Разумеется, необходимый для отпирания ток управляющего вывода будет намного ниже, чем ток через SCR тиристор от катода до анода, поэтому, используя SCR тиристор, можно добиться усиления.

Переключение/запуск

Данный метод обеспечения проводимости тиристора SCR называется запуском или переключением, и на сегодняшний день наиболее распространенным способом является тот, которым SCR тиристор отпирается в реальной практике. Фактически, SCR тиристоры обычно выбираются так, чтобы их напряжения переключения находились далеко за пределами наибольшего напряжения, ожидаемого от источника питания, поэтому его можно включить (отпереть) только путем преднамеренного импульса напряжения, подаваемого на управляющий вывод.

Обратное переключение

Следует отметить, что SCR тиристоры иногда могут быть выключены (заперты) путем прямого замыкания управляющего вывода и вывода катода или с помощью «обратного переключения» управляющего вывода отрицательным напряжением (относительно катода), чтобы принудительно перевести нижний транзистор в режим отсечки. Я говорю, что это «иногда» возможно потому, что это включает в себя шунтирование всего тока верхнего транзистора через базу нижнего транзистора. Этот ток может быть существенным, что в лучшем случае затрудняет запирание SCR тиристора. Вариация SCR тиристора под названием запираемый тиристор, или GTO (Gate-Turn-Off), облегчает эту задачу. Но даже с GTO тиристором ток управляющего электрода, необходимый для его отключения, может составлять до 20% от тока анода (нагрузки)! Условное обозначение GTO тиристора показано на рисунке ниже.

Условное обозначение GTO тиристора
Условное обозначение GTO тиристора

SCR тиристоры против GTO тиристоров

Тиристоры SCR и GTO имеют одну и ту же эквивалентную схему (два транзистора, соединенные по принципу положительной обратной связи), единственными отличиями являются детали конструкции, предназначенные для предоставления NPN транзистору большего коэффициента β, чем у PNP транзистора. Это позволяет меньшему току управляющего электрода (прямому или обратному) осуществлять большую степень управления проводимостью от катода к аноду, причем открытое состояние PNP транзистора больше зависит от NPN транзистора, чем наоборот. Запираемый тиристор GTO также известен под названием тиристор GCS (Gate-Controlled Switch).

Проверка работоспособности SCR тиристора с помощью мультиметра

Элементарный тест работоспособности SCR тиристора или, по крайней мере, определение выводов, может выполняться измерителем сопротивления. Поскольку внутреннее соединение между управляющим электродом и катодом является PN переходом, мультиметр должен показывать целостность соединения между этими выводами с красным измерительным щупом на управляющем электроде и черным измерительным щупом на катоде следующим образом (рисунок ниже).

Элементарная проверка SCR тиристора
Элементарная проверка SCR тиристора

Все остальные измерения целостности соединений, выполненные на SCR тиристоре, будут показывать «разрыв» («OL» на дисплеях некоторых цифровых мультиметров). Следует понимать, что этот тест очень груб и не является полной оценкой SCR тиристора. SCR тиристор может давать хорошие показания омметра и по-прежнему оставаться неисправным. В конечном счете, единственный способ проверить SCR тиристор – подвергнуть его нагрузочному току.

Если вы используете мультиметр с функцией «проверки диода», показания напряжения перехода управляющий электрод - катод, которые вы получите, могут соответствовать, а могут и нет, тому, что ожидается от кремниевого PN перехода (примерно 0,7 вольта). В некоторых случаях вы будете получать показания намного более низкого напряжения перехода: сотые доли вольта. Это связано с внутренним резистором, подключенным между управляющим электродом и катодом и включенным в некоторые SCR тиристоры. Этот резистор добавляется, чтобы сделать SCR тиристор менее восприимчивым к ложным срабатываниям из-за ложных импульсов напряжения, из-за «шума» схемы или из-за статического электрического разряда. Другими словами, наличие резистора, подключенного к переходу управляющего электрода и затвора, требует большего переключающего сигнала (существенного тока) для отпирания SCR тиристора. Эта функция часто встречается в мощных SCR тиристорах, а не в маленьких. Не забывайте, что SCR тиристор с внутренним резистором, подключенным между управляющим электродом и катодом, будет показывать целостность соединения в обоих направлениях между этими двумя выводами (рисунок ниже).

У больших SCR тиристоров между управляющим электродом и катодом есть встроенный резистор
У больших SCR тиристоров между управляющим электродом и катодом есть встроенный резистор

SCR тиристоры с чувствительным управляющим электродом

«Обычные» SCR тиристоры, лишенные внутреннего резистора, иногда называются SCR тиристорами с чувствительным управляющим электродом из-за их способности запускаться малейшим положительным сигналом на управляющем электроде.

Тестовая схема для SCR тиристора является практичной в качестве диагностического инструмента для проверки подозрительных SCR тиристоров, а также отличной помощью для понимания основ работы SCR тиристоров. Для питания схемы используется источник питания постоянного тока, а два кнопочных коммутатора используются для отпирания и запирания SCR тиристора (рисунок ниже).

Схема для проверки SCR тиристоров
Схема для проверки SCR тиристоров

Нажатие нормально разомкнутой кнопки «вкл» соединяет управляющий электрод с анодом, позволяя протекать току от отрицательного вывода батареи через PN переход катод - управляющий электрод, через кнопку, через резистор нагрузки, и обратно к батарее. Этот ток управляющего электрода должен заставить SCR тиристор отпереться, позволяя протекать току прямо от катода к аноду без дальнейшего отпирания через управляющий электрод. Когда кнопка «вкл» отпущена, нагрузка должна оставаться под напряжением.

Нажатие нормально замкнутой кнопки «выкл» разрывает цепь, заставляя ток через SCR тиристор остановиться, тем самым вынуждая его запереться (величина тока ниже тока удержания).

Ток удержания

Если SCR тиристор не отпирается, проблема может быть связана с нагрузкой, а не с тиристором. Чтобы удерживать SCR тиристор отпертым, требуется определенная величина тока нагрузки. Этот минимальный уровень тока называется током удержания. Нагрузка со слишком большим значением сопротивления может и не набирать достаточный ток, чтобы удерживать SCR тиристор отпертым, когда прекращается ток через управляющий электрод, что дает ложное впечатление о плохом (неотпираемом) SCR тиристоре в тестовой схеме. Значения тока удержания для разных SCR тиристоров доступны у производителей. Типовые значения тока удержания колеблются от 1 миллиампера до 50 миллиампер и более для больших тиристоров.

Чтобы проверка была исчерпывающей, необходимо протестировать более чем переключающее поведение. Прямое напряжение переключения SCR тиристора можно проверить, увеличивая напряжение источника постоянного тока (без нажатия кнопок) до тех пор, пока SCR тиристор не отопрется самостоятельно. Остерегайтесь того, что для теста переключения может потребоваться очень высокое напряжение: многие мощные SCR тиристоры имеют номинальное напряжение переключения 600 вольт и более! Кроме того, если имеется импульсный генератор напряжения, аналогичным способом может быть проверена критическая скорость повышения напряжения SCR тиристора: необходимо подвергнуть тиристор импульсному напряжению с разными скоростями напряжение/время без воздействия на кнопочные переключатели и пронаблюдать, когда тиристор отопрется.

В этом простом виде, схема для проверки SCR тиристоров может быть достаточной в качестве схемы управления запуском/остановкой для двигателя постоянного тока, лампы или другой практической нагрузки (рисунок ниже).

Схема управления запуском/остановкой двигателя постоянного тока
Схема управления запуском/остановкой двигателя постоянного тока

Схема «монтировки»

Другое практическое применение SCR тиристора в схемах постоянного тока – это устройство «монтировки» для защиты от перенапряжения. Схема «монтировки» состоит из SCR тиристора, установленного параллельно выходу источника постоянного напряжения, для установления короткого замыкания на выходе этого источника питания, чтобы предотвратить подачу слишком повышенного напряжения на нагрузку. Повреждение SCR тиристора и источника питания предотвращается путем установки перед SCR тиристором подходящего предохранителя или существенного последовательного сопротивления для ограничения тока короткого замыкания (рисунок ниже).

Схема блокировки, используемая в источнике питания постоянного тока
Схема «монтировки», используемая в источнике питания постоянного тока

Некоторое устройство или схема, определяющие выходное напряжение, будут подключены к управляющему электроду SCR тиристора, поэтому при возникновении состояния перенапряжения между управляющим электродом и катодом будет приложено напряжение, отпирающее SCR тиристор и заставляющее сработать предохранитель. Эффект будет примерно таким же, как кидание стальной монтировки прямо на выходные клеммы источника питания, отсюда и название схемы.

Большинство применений SCR тиристоров предназначены для управления питанием переменным током, несмотря на то, что SCR тиристоры являются устройствами постоянного тока (однонаправленными). Если схеме требуется двунаправленный ток, можно использовать несколько SCR тиристоров, причем для обработки обоих полупериодов волны переменного тока в каждом направлении должны смотреть один или несколько тиристоров. Основная причина, по которой SCR тиристоры вообще используются в приложениях управления питанием переменным током, – это уникальная реакция тиристора на переменный ток. Как мы видели, тиратронная лампа (электронно-ламповая версия SCR тиристора) и симметричный динистор (DIAC), гистерезисное устройство, запускаемое во время части полупериода переменного тока, будут отпираться и оставаться включенными на протяжении всей оставшейся части полупериода до тех пор, пока переменный ток не уменьшится до нуля, так как должен начинать следующий полупериод. Только перед точкой пересечения нуля сигналом переменного тока тиристор отключится (запрется) из-за недостаточного тока (это поведение также называется естественной коммутацией) и должен будет снова отпереться в следующем периоде. Результатом является ток цепи, эквивалентный «обрезанной» синусоиде. Для примера, ниже приведен график отклика симметричного динистора (DIAC) на переменное напряжение, пиковое значение которого превышает напряжение переключения DIAC.

Двунаправленный отклик симметричного динистора (DIAC)
Двунаправленный отклик симметричного динистора (DIAC)

При использовании DIAC предельное напряжение переключения было фиксированной величиной. С SCR тиристором мы контролируем, когда точно устройство отпирается путем переключения управляющего вывода в любой момент времени периода сигнала. Подключив подходящую схему управления к управляющему электроду SCR тиристора, мы можем «обрезать» синусоиду в любой точке, чтобы обеспечить пропорционально времени управление питанием на нагрузке.

Возьмем в качестве примера схему на рисунке ниже. Здесь SCR тиристор помещается в схему для управления питанием нагрузки, потребляемым от источника переменного тока.

Управление мощностью переменного тока с помощью SCR тиристора
Управление питанием переменным током с помощью SCR тиристора

Будучи однонаправленным (односторонним) устройством, самое большее, что мы можем подать на нагрузку, это только одна полуволна во время полупериода переменного тока, когда полярность напряжения питания положительна сверху и отрицательна снизу. Однако для демонстрации базовой идеи управления пропорционально времени эта простая схема подходит лучше, чем схема, управляющая мощностью во время всей волны (для чего потребуется два SCR тиристора).

При отсутствии переключения на управляющем электроде и величине напряжения источника переменного тока значительно ниже номинального напряжения переключения SCR тиристора SCR тиристор никогда не откроется. Подключение управляющего электрода SCR тиристора к аноду через стандартный выпрямительный диод (для предотвращения обратного тока через управляющий вывод в случае, если SCR тиристор содержит встроенный резистор между управляющим выводом и катодом) позволит запускать SCR тиристор почти сразу в начале каждого положительного полупериода (рисунок ниже).

Управляющий электрод подключен напрямую к аноду через диод; через нагрузку протекает почти целая полуволна тока.
Управляющий электрод подключен напрямую к аноду через диод; через нагрузку протекает почти целая полуволна тока.

Задержка запуска SCR тиристора

Однако мы можем отложить запуск SCR тиристора, вставив некоторое сопротивление в цепь управляющего электрода, тем самым увеличивая величину падения напряжения, требуемого перед тем, как будет достигнут достаточный ток управляющего электрода SCR тиристора. Другими словами, если мы затрудняем движение электронов через управляющий электрод путем добавления сопротивления, переменное напряжение должно будет достигнуть более высокой точки в своем цикле, прежде чем будет достигнут достаточный ток управляющего вывода, чтобы включить SCR тиристор. Результат показан на рисунке ниже.

В цепь управляющего электрода вставлено сопротивление; через нагрузку протекает меньше полуволны тока.
В цепь управляющего электрода вставлено сопротивление; через нагрузку протекает меньше полуволны тока.

Когда сигнал «полусинусоиды» будет в значительной степени обрезан за счет задержки запуска SCR тиристора, нагрузка получит меньшую среднюю мощность (питание подается на меньшее время в течение всего периода). Сделав последовательный резистор в цепи управляющего электрода переменным, мы можем подстроить мощность пропорционально времени (рисунок ниже).

Увеличение сопротивления повышает уровень порога, в результате чего до нагрузки доходит меньшая мощность. Уменьшение сопротивления понижает уровень порога, в результате чего до нагрузки доходит большая мощность.
Увеличение сопротивления повышает уровень порога, в результате чего до нагрузки доходит меньшая мощность.
Уменьшение сопротивления понижает уровень порога, в результате чего до нагрузки доходит большая мощность.

К сожалению, эта схема управления имеет значительные ограничения. При использовании сигнала источника переменного тока в качестве сигнала, переключающего наш SCR тиристор, мы ограничиваем управление первой половиной полупериода сигнала. Другими словами, мы не можем подождать, чтобы переключить SCR тиристор после пика сигнала. Это означает, что мы можем убавить мощность только до того момента, когда SCR тиристор включится на самом пике сигнала.

Схема при установке минимальной мощности
Схема при установке минимальной мощности

Повышение порога срабатывания переключения приведет к тому, что схема не будет запускаться вообще, так как даже пик переменного напряжения источника питания будет недостаточным для запуска SCR тиристора. В результате питание на нагрузку подаваться не будет.

Гениальное решение этой дилеммы управления обнаруживается при добавлении в схему фазосдвигающего конденсатора (рисунок ниже).

Добавление в схему фазосдвигающего конденсатора
Добавление в схему фазосдвигающего конденсатора

Меньший сигнал, показанный на графике, представляет собой напряжение на конденсаторе. Для иллюстрации фазового сдвига я предполагаю условие максимального управляющего сопротивления, когда SCR не запускается вообще и не подает на нагрузку ток, за исключением того, какой небольшой ток проходит через управляющий резистор и конденсатор. Это напряжение конденсатора будет сдвинуто по фазе от 0° до 90°, отставая от сигнала переменного тока. Когда это сдвинутое по фазе напряжение достигает достаточно высокого уровня, SCR тиристор отпирается.

При напряжении на конденсаторе, достаточном для периодического запуска SCR тиристора, итоговый сигнал тока нагрузки будет выглядеть примерно так, как показано на рисунке ниже.

Сдвинутый по фазе сигнал переключает SCR тиристор в режим проводимости
Сдвинутый по фазе сигнал переключает SCR тиристор в режим проводимости

Поскольку сигнал на конденсаторе всё еще растет после того, как основной сигнал от источника питания достиг своего пика, становится возможным запустить SCR тиристор на пороговом уровне за этим пиковым значением, тем самым обрезая сигнал тока нагрузки дальше, чем это было возможно с более простой схемой. В действительности сигнал напряжения конденсатора немного сложнее, чем показано здесь, его синусоидальная форма искажается каждый раз, когда открывается SCR тиристор. Однако то, что я пытаюсь проиллюстрировать здесь, – это отложенное срабатывание, связанное с фазосдвигающей RC цепью; таким образом, упрощенная, неискаженная форма сигнала хорошо служит этой цели.

Запуск SCR тиристоров сложными схемами

SCR тиристоры также могут быть запущены, или «отперты», более сложными схемами. Хотя ранее показанная схема достаточна для простого применения, такого как управление лампой, управление большими промышленными двигателями часто опирается на более сложные схемы запуска. Иногда для соединения схемы запуска с управляющим электродом и катодом SCR тиристора для обеспечения электрической изоляции между цепями запуска и силовыми цепями используются импульсные трансформаторы (рисунок ниже).

Трансформаторная связь сигнала переключения обеспечивает изоляцию
Трансформаторная связь сигнала переключения обеспечивает изоляцию

Когда для управления питанием используется несколько SCR тиристоров, их катоды часто не являются электрически общими, что затрудняет подключение единой схемы запуска ко всем SCR тиристорам одинаково. Примером этого является управляемый мостовой выпрямитель, показанный на рисунке ниже.

Управляемый мостовой выпрямитель
Управляемый мостовой выпрямитель

В любой схеме мостового выпрямителя выпрямительные диоды (в этом примере выпрямительные SCR тиристоры) должны проводить ток в противоположных парах. SCR1 и SCR3 должны быть запущены одновременно, и SCR2 и SCR4 должны быть запущены как пара. Однако, как вы заметили, эти пары SCR тиристоров не используют одни и те же соединения катодов, а это означает, что схема не будет работать, если просто запараллелить их управляющие электроды и подключить к ним единый источник напряжения, чтобы запустить оба тиристора (рисунок ниже).

Эта стратегия не будет работать для запуска SCR2 и SCR4 в качестве пары
Эта стратегия не будет работать для запуска SCR2 и SCR4 в качестве пары

Хотя показанный источник напряжения запуска запустит SCR4, он не запустит должным образом SCR2, потому что эти два тиристора не имеют общего соединения катодов для использования его в качестве опорной точки для напряжения запуска. Однако импульсные трансформаторы, подключающие два управляющих электрода тиристоров к источнику напряжения запуска, будут работать (рисунок ниже).

Трансформаторная связь управляющих элетродов позволяет запускать SCR2 и SCR4
Трансформаторная связь управляющих электродов позволяет запускать SCR2 и SCR4

Имейте в виду, что эта схема показывает подключение управляющих электродов только двух из четырех SCR тиристоров. Импульсные трансформаторы и источники запуска для SCR1 и SCR3, а также детали самих импульсных источников были опущены для простоты.

Управляемые мостовые выпрямители не ограничиваются однофазными схемами. В большинстве промышленных систем питание переменным током доступно в трехфазной форме для получения максимальной эффективности, и из-за своих преимуществ в них используются твердотельные схемы управления. Схема трехфазного управляемого выпрямителя, построенная на SCR тиристорах, не показывающая импульсных трансформаторов и схем запуска, будет выглядеть как на рисунке ниже.

Трехфазное мостовое управление нагрузкой на SCR тиристорах
Трехфазное мостовое управление нагрузкой на SCR тиристорах

Резюме

  • Кремниевый управляемый выпрямитель, или SCR тиристор, по сути, является динистором (диодом Шокли) с дополнительным выводом. Этот дополнительный вывод называется управляющим электродом, и он используется для переключения устройства в режим проводимости (отпирает его) с помощью прикладывания небольшого напряжения. Для запуска, или отпирания, SCR тиристора напряжение должно быть приложено между управляющим электродом и катодом, плюс на управляющий электрод, минус на катод.
  • При тестировании SCR тиристора кратковременное соединение между управляющим электродом и анодом достаточно по полярности, интенсивности и продолжительности, чтобы отпереть тиристор. SCR тиристоры могут быть запущены с помощью преднамеренного запуска вывода управляющего электрода, повышенного напряжения (переключения) между анодом и катодом или повышенной скорости нарастания напряжения между анодом и катодом. SCR тиристоры могут быть выключены (заперты) падением анодного тока ниже значения тока удержания (выключение по низкому току) или «обратным переключением» управляющего электрода (прикладывание отрицательного напряжения к управляющему электроду). Обратное переключение эффективно только иногда и всегда включает в себя высокий ток через управляющий вывод.
  • Вариант SCR тиристора, называемый запираемым тиристором (GTO (Gate-Turn-Off) тиристор), специально предназначен для отключения с помощью обратного переключения. Даже в этом случае обратное переключение требует довольно высокого тока: обычно 20% от тока анода. Выводы SCR тиристора могут быть идентифицированы с помощью мультиметра в режиме «прозвонки»: единственные два вывода, показывающие какие-либо показания при «прозвонке», должны быть управляющий электрод и катод. Выводы управляющего электрода и катода подключаются к PN переходу внутри SCR тиристора, поэтому мультиметр в режиме «прозвонки» должен выдавать диодо-подобные показания между двумя этими выводами с красным (+) щупом на управляющем электроде и черным (-) щупом на катоде. Однако имейте в виду, что некоторые мощные SCR тиристоры содержат внутренний резистор, подключенный между управляющим электродом и катодом, что повлияет на любые измерения целостности соединения, проводимые мультиметром.
  • SCR тиристоры являются настоящими выпрямителями: они пропускают ток через себя только в одном направлении. Это означает, что они не могут использоваться в одиночку для двухполупериодного управления питанием переменным током. Если диоды в схеме выпрямителя заменить на SCR тиристоры, вы получите схему управляемого выпрямителя, где питание постоянным напряжением может подаваться на нагрузку пропорционально времени отпирания SCR тиристоров в разные моменты периода переменного напряжения питания.

Теги

SCR / тринистор (кремниевый управляемый выпрямитель)Защита цепейМультиметрОбучениеТиристорТок удержанияЭлектроника

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.