Добавьте защиту от короткого замыкания в ваш повышающий преобразователь
Повышающий преобразователь – это DC-DC преобразователь, используемый для получения выходного напряжения, которое выше входного. Повышающие преобразователи также используются для управления светодиодами, включенными последовательно, в таких устройствах, как светодиодные фонари. Данные преобразователи обладают уязвимостью к короткому замыканию в цепи нагрузки. В данной статье обсуждается: почему повышающие преобразователи уязвимы к короткому замыканию, способы защиты повышающих преобразователей от короткого замыкания, и альтернативные преобразователи силовой электроники, которые не обладают данной уязвимостью, и которые могут быть использованы вместо повышающего преобразователя.
Введение в повышающие преобразователи
Как отмечалось ранее, повышающий преобразователь выдает выходное напряжение, которое выше входного. Примеры использования повышающих преобразователей включают в себя:
- подача напряжения 5 В на порты зарядки для литиевых аккумуляторов;
- подача напряжения на шины питания в смартфонах;
- управление включенными последовательно светодиодами в светодиодных фонарях;
- регулятор напряжения в проекте на основе Arduino;
- создание высокого напряжения для запуска двигателя от одной ячейки литиевого аккумулятора.
На рисунке 1 изображена упрощенная схема повышающего преобразователя. Эта простая схема построена на конденсаторах, индуктивности, MOSFET транзисторе, и диоде. Выход управляется через петлю обратной связи (не показана для простоты) с помощью управления коэффициентом заполнения, долей времени, во время которого транзистор находится в открытом состоянии. Передаточная функция, или соотношение между выходным и входным напряжениями, составляет Uвых/Uвх = 1/(1-D), где Uвых – это выходное напряжение, Uвх – входное напряжение, D – коэффициент заполнения. В состав реального повышающего преобразователя входит микросхема ШИМ-контроллера, которая на рисунке 1 не показана.
Обратите внимание, что если выходной вывод повышающего преобразователя замкнуть накоротко на корпус, то входное напряжение тоже будет замкнуто на корпус через индуктивность и диод. Здесь нет никакого ограничения по току, который потечет в этом случае, и который будет ограничен лишь сопротивлением проводов и ограничением по току источника питания, подключенного к входу. Повышающий преобразователь выйдет из строя вместе с диодом, катушкой индуктивности, или произойдет возгорание, расплавление или какое-либо другое катастрофическое повреждение, если не будут предприняты меры для защиты повышающего преобразователя.
Общая стратегия защиты
Общая стратегия защиты, изложенная в данной статье, заключается во включении коммутатора между источником питания и повышающим преобразователем, который будет использоваться для отключения повышающего преобразователя от источника питания в случае короткого замыкания цепи нагрузки. Этот коммутатор может быть реализован на MOSFET транзисторе, на коммутаторе нагрузки, на микросхеме повышающего преобразователя с встроенным коммутатором защиты, или на предохранителе.
Защита с MOSFET транзистором
MOSFET транзистор, добавленный перед повышающим преобразователем, может использоваться для отключения от него источника питания. Посмотрите на упрощенные схемы на рисунках 2 и 3. MOSFET транзистор может потребовать дополнительной схемы для смещения затвора. MOSFET транзистор с каналом n-типа требует, чтобы напряжение на его затворе было выше напряжения на его истоке. Это может потребовать микросхему драйвера затвора или накачку заряда. MOSFET транзистор с каналом p-типа требует, чтобы напряжение на затворе было ниже напряжения на его истоке. Если входное напряжение достаточно велико, затвор MOSFET транзистора с каналом p-типа может быть подтянут к корпусу, чтобы открыть транзистор. По этой причине использование MOSFET транзистора с каналом p-типа может быть проще и легче. Обратите внимание, что на обеих схемах диод на обозначении MOSFET транзистора направлен от повышающего преобразователя к источнику питания, поэтому ток будет заблокирован, пока транзистор не откроется.
При выборе MOSFET транзистора для данного использования необходимо учитывать максимально допустимое напряжение затвор-исток (VGS), сопротивление сток-исток открытого канала (RDS), пороговое напряжение включения транзистора (VGS(th)). Максимально допустимое напряжение сток-исток должно быть на несколько вольт выше максимального входного напряжения. Сопротивление открытого канала сток-исток должно быть достаточно низким, чтобы не создавать больших потерь P=I2R. Пороговое напряжение включения транзистора должно быть достаточно низким, чтобы MOSFET транзистор мог легко открываться и закрываться.
Защита с коммутатором нагрузки
Коммутатор нагрузки – это мощный MOSFET транзистор с дополнительной микросхемой. Дополнительные функции могут включать в себя накачку заряда и переключение уровня для смещения затвора MOSFET транзистора, также функции защиты от перегрузки по току, которые выключают коммутатор при очень больших токах. Использование коммутатора нагрузки имеет следующие преимущества перед использованием MOSFET транзистора:
- уменьшается количество используемых компонентов;
- уменьшается размер печатной платы;
- уменьшается сложность конструкции, так как вам не нужно добавлять дополнительную схему управления.
Контроллеры повышающих преобразователей со встроенной защитой
Реальные повышающие преобразователи управляются микросхемой, которая регулирует преобразование напряжения. Некоторые из этих микросхем контроллеров повышающих преобразователей уже имеют встроенные механизмы защиты, такие как коммутация нагрузки. Использование контроллера со встроенной защитой упрощает конструкцию, уменьшает количество используемых компонентов и уменьшает размер печатной платы. В качестве примера микросхем повышающих преобразователей, в которые включены функции защиты, можно привести LM4510 и TPS61080 от Texas Instruments.
Защита с предохранителем
Предохранитель может быть размещен на входе или на выходе повышающего преобразователя для защиты от короткого замыкания в цепи нагрузки. Смотрите рисунок 6 в качестве примера.
Автор рекомендует использовать другие подходы, описанные в данной статье, так как конструкция с предохранителем доставляет больше неудобств. Если произойдет короткое замыкание, предохранитель сгорит и потребуется его замена. Схемы, построенные на дополнительных защитных MOSFET транзисторах, коммутаторах нагрузки или интегрированной защите, не требуют замены каких-либо компонентов, если конвертеры работают правильно. Эти технические решения сохранят конечному пользователю время и деньги, необходимые для замены сгоревшего предохранителя. Кроме того, предохранители не срабатывают так быстро, как можно было бы ожидать, прочитав документацию. Это может привести к выходу из строя компонентов и проводников до того момента, когда сгорит предохранитель. Схемы, использующие MOSFET транзисторы, коммутаторы нагрузки и микросхемы со встроенной защитой, могут отключить нагрузку за микросекунды или быстрее, обеспечивая дополнительную безопасность и надежность для схемы. Тем не менее, решение с предохранителем может быть простым и дешевым для реализации.
Заключение
Повышающие преобразователи используются везде, но страдают от уязвимости к коротким замыканиям в цепи нагрузки. Данная статья обсуждает несколько подходов к устранению этой уязвимости, включая использование MOSFET транзисторов, коммутаторов нагрузки, микросхем со встроенной защитой и предохранителей для отключения повышающего преобразователя в случае короткого замыкания в цепи нагрузки.