Понятие сдвига фазы в аналоговых цепях
Рассмотрим, что такое сдвиг фазы, и как это фундаментальное электрическое явление связано с различными конфигурациями схем.
В данной статье рассказывается о сдвиге фазы, о влиянии схемы, вызывающем опережение или отставание напряжения или тока на выходе схемы относительно входа. В частности, нам будет интересно то, как реактивные нагрузки и цепи будут влиять на сдвиг фазы в схеме. Сдвиг фазы может иметь всевозможные последствия, независимо от того, работаете ли вы с генераторами, усилителями, петлями обратной связи, фильтрами и т.п. Например, вы ожидаете, что ваша инвертирующая схема на операционном усилителе будет давать сдвиг фазы на 180°, но вместо этого она возвращает синфазный сигнал и вызывает проблемы с автоколебаниями. Или, например, подключение измерительных щупов для анализа цепи может внести свое влияние. Или, возможно, у вас есть резонансный контур, который используется в петле обратной связи автогенератора, но контур обеспечивает сдвиг фазы только 90°, тогда как вам нужно 180°. Вы должны изменить контур, но как?
Сдвиг фазы для реактивных нагрузок
Частотно-зависимый сдвиг фазы происходит из-за влияния реактивных компонентов: конденсаторов и катушек индуктивности. Это относительная величина, и поэтому она должна быть задана как разность фаз между двумя точками. В данной статье «сдвиг фазы» будет означать разницу по фазе между выходом и входом. Говорят, что конденсатор вызывает отставание напряжения от тока на 90°, в то время как индуктивность вызывает отставание тока от напряжения на 90°. В векторной форме это обозначается +j или -j в индуктивном и емкостном реактивном сопротивлении соответственно. Но емкость и индуктивность в некоторой степени существуют во всех проводниках. Так почему же они не вызывают сдвиги фаз на 90°?
Все наши эффекты сдвига фазы будут моделироваться цепями RC и RL. Все схемы могут быть смоделированы как источник с некоторым внутренним сопротивлением, рассматриваемая схема и нагрузка, следующая за схемой. Внутренний импеданс источника также называется его выходным сопротивлением. Я считаю, что проще всего говорить о входном и выходном импедансе и о каскадах, поэтому позвольте мне перефразировать: все схемы могут быть смоделированы как выход одного каскада с некоторым выходным импедансом, питающий следующий каскад, который нагружен входным импедансом следующего каскада. Это важно, потому что это уменьшает сложность цепей до гораздо более простых RLC-цепей, фильтров и делителей напряжения.
Взгляните на следующую схему.
Это будет моделировать некоторую цепь источника (например, усилитель) с выходным сопротивлением 50 Ом, который имеет нагрузку 10 кОм и шунтируется конденсатором 10 нФ. Здесь должно быть понятно, что схема, по сути, является RC-фильтром нижних частот, выполненным из R1 и C1. Из базового анализа цепей мы знаем, что сдвиг фазы напряжения в RC-цепи будет изменяться от 0° до -90°, и моделирование подтверждает это.
Для низких частот фаза выходного сигнала не зависит от конденсатора. Когда мы доберемся до частоты среза (fср) RC-фильтра, фаза падает до -45°. Для частот выше частоты среза фаза приближается к своему асимптотическому значению -90°.
Эта фазо-частотная характеристика моделирует сдвиг фазы, вызванный любым шунтирующим конденсатором. Шунтирующий конденсатор вызовет сдвиг фазы на резистивной нагрузке между 0° и -90°. Конечно, также важно помнить и об ослаблении.
Аналогичный взгляд на последовательный конденсатор (например, конденсатор емкостной связи по переменному току) показывает типовой эффект подобной схемы.
В этом случае сдвиг фазы начинается с +90°, а фильтр является фильтром верхних частот. За пределами частоты среза, в конечном итоге, устанавливается значение 0°. Итак, мы видим, что последовательный конденсатор всегда будет вносить сдвиг фазы между +90° и 0°.
Усилитель с общим эмиттером
Имея в распоряжении эту информацию, мы можем применить RC-модель к любой цепи, к какой захотим. Например, этот усилитель с общим эмиттером.
Частотные характеристики данного усилителя будут плоскими примерно до 10 МГц.
Только после примерно 10 МГц мы видим изменения сдвига фазы – ниже 180°, что мы и ожидаем, поскольку схема с общим эмиттером представляет собой инвертирующий усилитель. Выходной импеданс усилителя, пренебрегая эффектом Эрли, равен R2 = 3 кОм, что довольно высоко.
Теперь мы поставили на выходе шунтирующий конденсатор. Что мы можем ожидать от фазы?
Исходя из нашего опыта, мы ожидаем, что частота среза будет составлять 53 Гц, ниже которой сдвиг фазы должен быть 180° (без влияния конденсатора), и выше которой сдвиг фазы будет равен 180° - 90° = 90° (а также большие потери). Моделирование подтверждает наши подозрения:
Обратите внимание, что это эквивалентно тому, если бы фаза изменялась от -180° до -270°. Теперь мы начинаем понимать, что питание емкостной нагрузки может привести к неожиданным изменениям фазы, что может нанести ущерб усилителю с неожиданной обратной связью.
В более распространенном сценарии на выходе используется последовательно включенный конденсатор связи, как показано на следующей схеме.
Я изменил номиналы элементов схемы и добавил резистивную нагрузку 100 кОм. Теперь мы имеем фильтр верхних частот, состоящий из C1 и R3, с частотой среза всего 1,6 Гц. Мы ожидаем, что сдвиг фазы будет равен -90° на частотах ниже 1,6 Гц и -180° на частотах выше частоты среза, что подтверждается моделированием.
Конденсатор связи с таким номиналом подошел бы для сигналов звуковой частоты, поскольку область сдвига фазы -90° (и, следовательно, затухания) значительно ниже 10 Гц.
Конечно, такого рода эффекты не ограничиваются конденсаторами. Индуктивности будут оказывать противоположное влияние: шунтирующие катушки индуктивности вызывают сдвиг фазы от 0° (ниже fср) до +90° (значительно выше fср), в то время как последовательно включенные катушки индуктивности вызывают сдвиг фазы от 0° (выше fср) до -90° (ниже fср) , Однако в этом случае необходимо быть осторожным, чтобы не создавать проблемных замыканий на землю, поскольку катушки индуктивности для постоянного тока будут представлять собой короткое замыкание.
Заключение
Мы заложили основу для понимания сдвига фазы в аналоговых схемах. Рассматривая выход схемы как источник с выходным сопротивлением, мы можем эффективно моделировать влияние реактивных нагрузок на фазу схемы. Таким образом, можно моделировать как пассивные, так и активные схемы, что дает нам полезные инструменты для простого анализа и проектирования. В следующей статье мы проверим эти концепции, применив их к схемам на операционных усилителях и к резонансным контурам.