Определение эквивалентного последовательного сопротивления (ESR) конденсаторов

Добавлено 12 декабря 2019 в 07:16

Рассмотрим подробнее важность ESR (эквивалентного последовательного сопротивления) конденсатора, как его измерить, и какие факторы могут повлиять на ваши измерения.

По мере того, как рабочие частоты увеличиваются, а электронные системы становятся все сложнее и меньше, разработчики должны уделять пристальное внимание ESR (эквивалентному последовательному сопротивлению) конденсатора, поскольку оно влияет на энергопотребление и эффективность.

Знание значения ESR в ожидаемых условиях работы может очень помочь в определении пригодности конкретного конденсатора для выполнения заданной функции.

Некоторые производители указывают ESR при конкретных частоте и рабочих условиях, некоторые просто указывают коэффициент рассеяния, а другие не предоставляют ни ESR, ни коэффициента рассеяния.

Эквивалентное последовательное сопротивление (ESR) является одной из характеристик неидеального конденсатора, которая может вызывать различные проблемы производительности в электронных схемах. Высокое значение ESR ухудшает производительность из-за потерь I2R, шума и более высокого падения напряжения.

В некоторых случаях тепло, выделяемое благодаря ESR, невелико и может не вызывать проблем. Однако в некоторых схемах, особенно в приложениях с большим током, рассеиваемое тепло может вызвать значительное повышение температуры, повлиять на работу схемы и вызвать деградирование конденсатора. Кроме того, на сопротивлении происходит значительное падение напряжения, что снижает долю полезной энергии в приложении.

Таким образом, при выборе конденсатора для таких применений, как ВЧ, аккумулирование энергии, схемы фильтров и другие чувствительные схемы, требуется учет и других характеристик, помимо значений емкости и напряжения.

Связанная информация

Влияние ESR на радиочастотные схемы и схемы аккумулирования энергии

Несмотря на то, что ESR у керамических конденсаторов очень мало, порядка миллиом, это сопротивление может существенно повлиять на такие схемы, как радиочастотные схемы и схемы с низким энергопотреблением.

В переносных радиочастотных передатчиках конденсаторы с высоким ESR в схемах связи или обхода источника питания усилителя потребляют и расходуют больше энергии аккумулятора из-за более высоких потерь I2ESR. Это уменьшает эффективность, выходную мощность и срок службы батареи.

Кроме того, большинство радиочастотных полупроводниковых устройств, изготовленных для согласующих каскадов, построены с очень низким входным сопротивлением. Таким образом, согласующий конденсатор, такой как многослойный керамический чип-конденсатор (MLCC) с высоким ESR, будет представлять собой значительную долю от общего полного сопротивления цепи. Например, если входной импеданс устройства составляет 1 Ом, согласующий конденсатор с ESR 0,8 Ом будет рассеивать около 40 процентов общей мощности, таким образом, уменьшая выходную мощность и эффективность схемы.

Конденсаторы в приложениях по аккумулированию энергии выполняют более важную роль – накапливают заряд от низковольтных источников энергии и быстро и эффективно разряжают эту накопленную энергию для питания нагрузки. Следовательно, конденсаторы и другие компоненты в цепях аккумулирования энергии должны во время работы потреблять очень мало энергии.

Конденсатор с высоким ESR будет иметь бо́льшие потери I2ESR, поэтому часть полученной энергии в конечном итоге будет потрачена впустую в виде тепла, что приведет к уменьшению выходной энергии конденсатора. Однако разработчики могут предпочесть суперконденсаторы (несмотря на их более высокие ESR и утечку), потому что они предлагают более высокую плотность энергии.

Определение эквивалентного последовательного сопротивления с помощью измерителя ESR

Измеритель ESR является умеренно точным прибором, который доступен и удобен в использовании, особенно при измерении нескольких конденсаторов, когда они находятся в схеме. На конденсатор в схеме делителя напряжения подается переменное напряжение. Частота подаваемого переменного напряжения обычно равна значению, при котором реактивное сопротивление конденсатора незначительно.

Рисунок 1 Простая модель измерения ESR
Рисунок 1 – Простая модель измерения ESR

Во время теста с использованием измерителя ESR ток пропускается через конденсатор в течение очень короткого времени, поэтому конденсатор не заряжается полностью. Ток создает напряжение на конденсаторе. Это напряжение будет равно произведению тока на ESR конденсатора, плюс незначительное напряжение из-за небольшого заряда в конденсаторе.

Поскольку ток известен, значение ESR рассчитывается путем деления измеренного напряжения на ток. Результаты затем отображаются на показаниях измерителя.

Измерения ESR могут выполняться, когда конденсатор находится и в схеме, и вне схемы. Для конденсаторов, подключенных параллельно, измерение дает в результате общее сопротивление. Если необходимо определить отдельно ESR у конкретных конденсаторов, они должны быть извлечены из схемы. Однако при наличии сотен конденсаторов утомительно вынимать каждый из них, а также существует повышенный риск повреждения конденсаторов или печатной платы во время удаления.

Типовой измеритель ESR использует низкое напряжение около 250 мВ или менее с частотой около 100 кГц. Низкое напряжение является недостаточным для смещения и активации полупроводниковых устройств в окружающих цепях, что гарантирует, что импеданс соседних компонентов не влияет на показания ESR.

Перед проведением измерения конденсатор должен быть разряжен. Некоторые измерители ESR имеют встроенный механизм разряда. Однако может быть важно разрядить конденсатор вручную, особенно если это высоковольтный конденсатор, заряд которого может повредить измеритель ESR.

Несмотря на то, что измеритель ESR может удобно тестировать конденсаторы внутри схемы, он имеет ограничения по частоте, а также по самому низкому уровню сопротивления, который он может точно измерить.

Измерение с помощью коаксиальной резонансной трубы для сверхнизких сопротивлений на высоких частотах

Поскольку значение ESR зависит от рабочей частоты, измерение сверхнизких значений ESR на очень высоких частотах становится проблемой при использовании обычных измерителей ESR.

Для керамических конденсаторов наиболее точным методом определения ESR на высоких частотах (от 100 МГц до 1,3 ГГц) является метод коаксиальной резонансной линии. Этот метод основан на стандартной модели Boonton 34A и используется вместе с генератором высокочастотных сигналов и высокочастотным вольтметром.

Рисунок 2 – Блок-схема коаксиальной резонансной трубки
Рисунок 2 – Блок-схема измерителя ESR на коаксиальной резонансной трубке

Линия коаксиального резонатора выполнена из медной трубки со сплошным медным стержнем в качестве центрального проводника. Тестируемый конденсатор устанавливается последовательно между центральным проводником и проводником экрана.

Перед выполнением измерения ESR конденсатора необходимо определить характеристики ненагруженной линии резонатора. ВЧ возбуждение закороченной коаксиальной линии помогает определить ширину полосы λ/4 и 3λ/4, тогда как ширина полосы λ/2 и λ определяется, когда линия разомкнута (λ – это длина волны; дополнительную информацию см. в этой статье). Эти данные характеризуют резонансную частоту, добротность (Q) ненагруженной резонансной линии и сопротивление крепежного элемента.

Затем тестируемый конденсатор помещается в секцию DUT (device under test, тестируемое устройство), и генератор сигналов настраивается на пиковое резонансное напряжение. Конденсатор вызывает изменение резонансной частоты и добротности, значения которых теперь отличаются от значений ненагруженной коаксиальной линии. Затем используются расчеты линии передачи, и значение ESR определяется на основе взаимосвязи между новой частотой и добротностью, а также частотой и добротностью исходного состояния без нагрузки.

Рисунок 3 Полоса пропускания нагруженной и незагруженной линии передачи
Рисунок 3 – Полоса пропускания нагруженной и незагруженной линии передачи

В настоящее время обычной практикой является использование векторного анализатора цепей для замены как генератора сигналов, так и высокочастотного вольтметра. При использовании векторного анализатора цепей резонансная частота считывается с дисплея. Некоторые модели векторных анализаторов могут экспортировать результаты непосредственно в программу расчета и отображать окончательное значение ESR.

Длина трубки рассчитана на работу в диапазоне частот от 100 МГц до 1,5 ГГц; однако для частот, выходящих за пределы этого диапазона, трубка может быть выполнена произвольной длины.

Факторы, которые влияют на измерения ESR

Ошибки измерения ESR могут возникать в результате проблем с техникой, способа выполнения контакта с конденсатором или отсутствия калибровки измерительного оборудования.

Должны быть приняты во внимание сопротивления, самоиндукция и емкость измерительного прибора и его выводов, особенно на высоких частотах измерения.

Сопротивление и индуктивность измерительных проводов

Сопротивление измерительных проводов является распространенным источником ошибок при измерениях низких сопротивлений. Это сопротивление добавляется к сопротивлению тестируемого устройства.

Кроме того, следует избегать измерительных проводов со спиральной намоткой, поскольку источником ошибки может стать их индуктивность.

Помехи от соседнего оборудования

Измерение следует проводить в местах, удаленных или экранированных от источников значительных электромагнитных помех. В противном случае измерительные провода могут ловить помехи, и это может повлиять на показания.

Заключение

ESR варьируется в зависимости от типа конденсатора и условий эксплуатации, таких как частота и температура. Некоторые производители указывают ESR на определенной частоте и при определенных условиях работы, другие просто указывают коэффициент рассеяния, а другие не предоставляют ни ESR, ни коэффициента рассеяния. Тем не менее, знание значения ESR в ожидаемых условиях работы может очень помочь в определении пригодности конкретного конденсатора для выполнения заданной функции.

Тип метода, используемого для определения ESR, зависит от таких факторов, как тип конденсатора, рабочая частота и требуемая точность. В то время как измеритель ESR и другие самодельные измерители подходят для ряда применений на частотах примерно до 100 кГц, они не могут точно определить очень низкие значения ESR на очень высоких частотах. Метод коаксиальной резонансной линии часто является предпочтительным при определении сверхнизких значений ESR на частотах между приблизительно 100 МГц и 1,3 ГГц.

По мере того, как рабочие частоты увеличиваются, а электронные системы становятся меньше и сложнее, необходимо уделять пристальное внимание таким параметрам, как ESR, которые напрямую влияют на характеристики схемы и эффективность энергопотребления.

Теги

ESR (эквивалентное последовательное сопротивление)ИзмерениеКерамический конденсаторКонденсаторЭквивалентная схемаЭлектролитический конденсатор

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.