Введение в основы антенн
Основы антенн
Антенны используются для передачи и приема информации через изменения электромагнитных полей, которые окружают их. Данная статья представляет собой введение в теорию антенн для начинающих. В ней кратко рассматривается само понятие волны, падающая, отраженная и стоячая волны, КСВ, модуляция, дипольная антенна.
Краткая история электромагнетизма
Более 2600 лет назад (и, вероятно, еще раньше) древние греки обнаружили, что кусок янтаря, натёртый об мех, притягивает легкие предметы, например, перья. Примерно в то же время древние люди обнаружили магнитную руду, которая представляет собой куски намагниченной горной породы.
Потребовалось несколько сотен лет, чтобы определить, что существует два различных вида притяжения и отталкивания (магнитное и электрическое): одинаковые отталкиваются, а противоположные притягиваются. Затем прошло еще 2000 лет перед тем, как ученые впервые обнаружили, что эти два совершенно разных явления природы были неразрывно связаны между собой.
В начале девятнадцатого века Ханс Кристиан Эрстед помести провод перпендикулярно стрелке компаса и ничего не увидел. Но когда он повернул провод параллельно стрелке компаса и пропустил через него ток, стрелка отклонилась в одном направлении. Когда он пропустил ток через провод в противоположном направлении, стрелка компаса также отклонилась в противоположном направлении.
Этот провод был первой передающей антенной, а компас был первым приемником. Ученые в то время просто не знали об этом.
Пока не очень элегантно, этот эксперимент дал подсказку о том, как работает вселенная – что заряды, двигающиеся через провод, создают магнитное поле, которое перпендекулярно проводу. (Ученые вскоре узнали, что это поле, окружающее проводник, имеет круглую форму, а не форму прямой, перпендикулярной проводнику.)
С помощью этой информации ученые смогли описать способы, с которыми электрические и магнитные поля взаимодействуют с электрическими зарядами, и сформировать основы понимания электромагнетизма.
Вскоре Никола Тесла в своей лаборатории без проводов зажег лампы, продемонстрировал первую игрушечную лодку с дистанционным управлением и создал систему переменного тока, которую сегодня мы используем по всему миру для передачи электрической энергии.
Менее чем через столетие после эксперимента Эрстеда, Гульельмо Маркони изобрел способ передачи первых беспроводных телеграфных сигналов через Атлантику.
И вот теперь, через два столетия после первого эксперимента с компасом, мы можем делать фотографии далеких планет и отправлять их через необъятный космос на устройства, которые мы можем держать в руках – и всё благодаря антеннам.
Составные блоки
В нашей Вселенной действуют определенные правила. Люди обнаружили это тысячи лет назад, когда стали различать силу тяжести и способность одних объектов притягивать или отталкивать другие объекты. Затем люди обнаружили еще один набор правил притяжения и отталкивания, которые были полностью отделены от первого.
Люди разделили объекты по категориям и с помощью экспериментов определили, что положительный и отрицательный являются противоположными проявлениями свойства под названием «заряд», как и северный и южный полюса являются противоположными проявлениями чего-то под названием магнетизм, как и левая и правая руки являются двумя типами рук.
Что-то происходило в проводе Эрстеда независимо от того, была ли под ним стрелка компаса или нет. Это приводит к идее о неосязаемых электромагнитных полях, которые пронизывают Вселенную – и самые плотные материи, и вакуум. Каждый из наших объектов, отнесенных к категориям (+/-/N/S), влияет на пространство вокруг него и подвергается влиянию, если изменяется окружающее его поле.
Наложение волн (принцип суперпозиции)
Волны переносят энергию из одного места в другое.
Оставаясь нетронутым в течение длительного периода времени, поверхность воды в бассейне будет казаться плоской и неподвижной. Если побеспокоить воду в одном месте, молекулы воды побеспокоят соседние молекулы воды, которые побеспокоят соседние молекулы воды и так далее, пока волнение не дойдет до края бассейна.
Молекулы, которые начали цепь событий, остаются на месте, близкому их начальному расположению, но волнение достигнет края бассейна за секунды. Волны передают энергию без переноса вещества.
Волны, как мы их описываем, это движение возмущения через среду. Одиночное начальное возмущение или миллион таких возмущений, к распространению возмущения приводит цепная реакция столкновений молекул в бассейне.
Когда две волны возмущают одну и ту же область пространства, их амплитуды будут складываться или вычитаться, создавая либо конструктивную, либо разрушающую интерференцию. Эта практика временного сложения или вычитания называется принципом суперпозиции.
После того, как волны интерферируют в определенном месте, они продолжают движение в том же направлении и с той же скоростью, с какими они начали движение, так долго, пока они остаются в той же среде. Скорость и направление могут измениться, когда волна войдет в новую среду. Звуковые волны проходят через воздух, водные волны проходят через жидкости – вещества, через которые проходят волны, называются «средой».
Электромагнитные волны могут проходить через такие среды, как воздух и вода, или через пустоту космоса – они не требуют среды для распространения энергии из одного места в другое.
Отражение волны
При переходе волн из одной среды в другую часть их энергии передается, часть энергии отражается, а часть энергии рассеивается в окружающую среду.
Свойства материалов этих двух сред определяют соотношения передачи к отражению и рассеиванию. А также свойства материалов определяют, будет ли волна инвертироваться при отражении.
Отражение и инверсия
Когда волны распространяются из одной среды в другую, часть падающей энергии отражается. В зависимости от свойств материалов сред волны могут инвертироваться при отражении.
Представьте себе длинную пружину, привязанную к столбу. Если вы слегка ударите пружину слева, возмущение распространится по всей длине пружины, пока оно не ударит столб; и в этот момент оно изменит направление и начнет распространяться назад к вам с другой стороны, справа. Это и есть инверсия.
Возьмите ту же самую пружину и привяжите ее к веревке, одетой петлей на столб. Если вы слегка ударите пружину слева, возмущение распространится по всей длине пружины, пока оно не ударит веревку; в этот момент оно изменит направление и начнет распространяться назад к вам с той же стороны, слева.
Понимание отражения колебаний пружины поможет нам понять, что происходит внутри антенны.
Вот четыре ситуации, которые помогут проиллюстрировать понятия отражения и инверсии.
Инвертируется или нет волна при отражении, это определяется свойствами сред по обе стороны границы раздела.
Если волна инвертируется при отражении, и мы хотим получить конструктивную интерференцию в веревке, у нас должна быть веревка длиной, равной половине длины волны, полной длине волны или полутора длин волны и так далее:\(L = n {\lambda \over 2}\), где n – целое положительное число.
Антенный резонанс основан на тех же принципах отражения и интерференции: выбирайте длину провода так, чтобы отраженная энергия могла интерферировать конструктивно, создавая больший сигнал, а, не уменьшая его.
Стоячие волны
Когда две волны одинаковой длины распространяются в одной среде, но в противоположных направлениях (изображены синим и оранжевым цветами в примерах ниже), они могут взаимодействовать и образовывать стоячую волну (изображена зеленым цветом в примерах ниже). Стоячие волны называются так потому, что в то время, как синие волны движутся влево, а оранжевые волны движутся вправо, зеленые стоячие волны не обладают никаким видимым движением в какую-либо сторону.
Стоячая волна возникает только при определенных условиях в среде, которые определяются режимом отражения и длиной падающей волны.
Коэффициент стоячей волны (КСВ, SWR)
Стоячие волны максимальной амплитуды возникают при очень точной комбинации частоты (или длины волны) и длины антенны.
К сожалению, нецелесообразно и фактически невозможно иметь антенны, которые обладают точной длиной, необходимой для формирования идеальной стоячей волны в требуемом диапазоне частот. К счастью, в этом нет необходимости. Антенна с одной фиксированной длиной может работать в небольшом диапазоне частот с небольшим, приемлемым уровнем расстройки.
Длина антенны должна быть настроена для получения стоячей волны как можно более близкой к идеальной в центре рабочего диапазона частот.
Измерители КСВ (коэффициента стоячей волны) измеряют отношение передаваемой энергии к отраженной, и это отношение должно быть как можно ближе к 1:1.
Небольшие подстройки могут быть выполнены путем добавления в схему пассивных компонентов между оконечным каскадом усиления и антенной. Небольшие недостатки в настройке антенны могут вызвать появление разности потенциалов на конечном каскаде усиления, нагревание конечного участка передающей линии. Большой дисбаланс может вызвать подачу большой разности потенциалов обратно на схему передатчика, вызывая пробой диэлектрика, искрение и выход из строя оконечного усилителя.
Передача информации
Вероятно, наиболее известны два способа передачи информации: частотная модуляция (ЧМ, FM) и амплитудная модуляция (АМ, AM).
Частотная модуляция
При частотной модуляции информация передаются с помощью изменения частоты несущего колебания.
Амплитудная модуляция
При амплитудной модуляции частота несущего колебания остается постоянной. Информация передается с помощью изменения амплитуды несущей.
Дипольная антенна
Простая антенна, которая использует два одинаковых элемента, называется диполем. Самые короткие дипольные антенны работают с колебаниями, для которых длина антенны равна половине длины волны, и которые создают стоячие волны по всей длине антенны.
Изменяющиеся электрические поля вдоль длины антенны создают радиоволны, которые распространяются в направлениях от антенны.
Антенны позволяют передавать и получать информацию, воздействуя и подвергаясь воздействию электромагнитных полей, пронизывающих вселенную. В следующей статье мы рассмотрим различные типы антенн, и как они работают.