Как работает датчик газа/дыма MQ-2? И его взаимодействие с Arduino
Дайте вашему следующему проекту на Arduino нос для возможности обнаружения газов с помощью модуля датчика газа MQ-2. Это надежный датчик газа, подходящий для определения концентрации в воздухе LPG (сжиженного нефтяного газа), дыма, алкоголя, пропана, водорода, метана и угарного газа. Если вы планируете создать систему контроля качества воздуха в помещении, устройство проверки дыхания или систему раннего обнаружения пожара, то модуль датчика газа MQ-2 будет отличным выбором.

Что такое датчик газа MQ-2?
MQ-2 является одним из наиболее часто используемых датчиков газа из серии датчиков MQ. Это датчик газа типа металл-оксид-полупроводник (МОП, MOS), также известный как химрезистор (химический резистор), поскольку обнаружение основано на изменении сопротивления чувствительного материала, когда газ вступает в контакт с этим материалом. Используя простую цепь делителя напряжения, можно измерить концентрацию газа.

Датчик газа MQ-2 работает при постоянном напряжении 5 В и потребляет около 800 мВт. Он может обнаруживать концентрации LPG (сжиженного нефтяного газа), дыма, алкоголя, пропана, водорода, метана и угарного газа от 200 до 10000 ppm (миллионных долей).
Чему равен 1 ppm?
При измерении газов, таких как углекислый газ, кислород или метан, термин концентрация используется для описания количества газа по объему в воздухе. Двумя наиболее распространенными единицами измерения являются миллионная доля (ppm) и процентная концентрация.
Миллионная доля (сокращенно ppm) – это соотношение одного газа к другому. Например, 1000 ppm CO означает, что если бы вы могли сосчитать миллион молекул газа, 1000 из них были бы моноокисью углерода, а 999 000 молекул – какими-то другими газами.
Вот полный список технических характеристик:
Рабочее напряжение | 5 В |
Сопротивление нагрузки | 20 кОм |
Сопротивление нагревателя | 33 Ом ± 5% |
Потребляемая мощность | <800 мВт |
Сопротивление чувствительности | 10 кОм - 60 кОм |
Измерение концентрации | 200 - 10000 ppm |
Время разогрева | более 24 часов |
Для более подробной информации, пожалуйста, обратитесь техническому описанию.
Совет
Датчик чувствителен к нескольким газам – но не может сказать, какой из них он обнаружил! Это нормально; большинство датчиков газа такие. Таким образом, он лучше всего подходит для измерения изменений концентрации известного газа, а не для определения концентрация какого газа изменилась.
Внутренняя структура датчика газа MQ-2
Датчик фактически заключен в два слоя тонкой сетки из нержавеющей стали, которая называется «антивзрывной сеткой» (anti-explosion network). Она гарантирует, что нагревательный элемент внутри датчика не вызовет взрыва, когда мы ищем легковоспламеняющиеся газы.

Она также обеспечивает защиту датчика и отфильтровывает взвешенные частицы, поэтому внутрь камеры могут проходить только газообразные элементы. Сетка связана с остальной частью корпуса через медное зажимное кольцо.

Так выглядит датчик при удалении внешней сетки. Звездообразная структура образована из чувствительного элемента и шести соединительных ножек, которые выходят за пределы бакелитового основания. Из шести два вывода (H) отвечают за нагрев чувствительного элемента и соединены через катушку из никель-хромовой проволоки, хорошо известного проводящего сплава.
Остальные четыре вывода (A и B), отвечающие за выходные сигналы, подключены с использованием платиновых проводов. Эти провода соединены с корпусом чувствительного элемента и передают небольшие изменения тока, который проходит через чувствительный элемент.

Трубчатый чувствительный элемент изготовлен из керамики на основе оксида алюминия (Al2O3) и покрыт диоксидом олова (SnO2). Диоксид олова здесь является наиболее важным материалом, будучи чувствительным к горючим газам. Керамическая подложка просто увеличивает эффективность нагрева и обеспечивает постоянное нагревание площади датчика до рабочей температуры.

Итак, никель-хромовая катушка и керамика на основе оксида алюминия образуют систему подогрева; в то время как платиновые проволоки и покрытие из диоксида олова образуют сенсорную систему.
Как работает датчик газа?
Когда диоксид олова (частицы полупроводника) нагревается на воздухе до высокой температуры, на его поверхности адсорбируется кислород. В чистом воздухе донорные электроны диоксида олова притягиваются к кислороду, который адсорбируется на поверхности чувствительного материала. Это предотвращает протекание электрического тока.
В присутствии восстановительных газов поверхностная плотность адсорбированного кислорода уменьшается, так как он реагирует с восстановительными газами. Из-за чего электроны высвобождаются в диоксид олова, что позволяет току свободно течь через датчик.
Обзор аппаратного обеспечения – модуль датчика газа MQ-2
Поскольку сам датчик газа MQ-2 не совместим с макетными платами, мы рекомендуем для тестов использовать этот удобный небольшой модуль. Он очень прост в использовании и имеет два разных выхода. Он не только выдает двоичное представление о наличии горючих газов, но также выдает аналоговое представление об их концентрации в воздухе.

Напряжение на аналоговом выходе датчика изменяется пропорционально концентрации дыма/газа. Чем больше концентрация газа, тем выше выходное напряжение; в то время как меньшая концентрация газа приводит к более низкому выходному напряжению. Следующая анимация иллюстрирует взаимосвязь между концентрацией газа и выходным напряжением.

Аналоговый сигнал от датчика газа MQ-2 поступает на высокоточный компаратор LM393 (впаян в нижней стороне модуля) для оцифровки. Рядом с компаратором имеется небольшой потенциометр, который можно покрутить, чтобы отрегулировать чувствительность датчика. Вы можете использовать его для регулировки концентрации газа, при которой датчик его обнаруживает.
Калибровка модуля датчика газа MQ-2
Чтобы откалибровать датчик газа, вы можете держать датчик газа рядом с дымом/газом, который вы хотите обнаруживать, и поворачивать потенциометр, пока на модуле не начнет светиться красный светодиод. Поворачивайте потенциометр по часовой стрелке, чтобы увеличить чувствительность, или против часовой стрелки, чтобы уменьшить чувствительность.

Компаратор на модуле постоянно проверяет, достиг ли аналоговый выходной сигнал (A0) порогового значения, установленного потенциометром. Когда он пересекает пороговое значение, цифровой выход (D0) выдаст высокий логический уровень, и загорится светодиодный индикатор. Эта настройка очень полезна, когда вам нужно при достижении определенного порога запустить какое-то действие. Например, когда концентрация дыма пересекает пороговое значение, вы можете включить или выключить реле или дать команду включить вентиляцию или спринклерную систему пожаротушения.
Распиновка модуля датчика газа MQ-2
Теперь давайте посмотрим на распиновку.

- VCC обеспечивает питание для модуля. Вы можете подключить его к выходу 5 В вашей платы Arduino.
- GND – вывод земли, должен быть подключен к выводу GND на Arduino.
- D0 обеспечивает цифровое представление о наличии горючих газов.
- A0 обеспечивает аналоговое выходное напряжение, пропорциональное концентрации дыма/газа.
Подключение модуля датчика газа MQ-2 к Arduino UNO
Теперь, когда у нас есть полное представление о том, как работает датчик газа MQ-2, мы можем подключить его к нашей плате Arduino!
Подключить модуль датчика газа MQ-2 к Arduino довольно просто. Начните с установки датчика на макетную плату. Подключите вывод VCC к выводу 5V на Arduino, а вывод GND – к выводу Ground на Arduino.
Подключите выходной вывод D0 на модуле к цифровому выводу 8 на Arduino, а выходной вывод A0 на модуле – к аналоговому выводу 0 на Arduino.
Когда вы закончите, у вас должно получиться что-то похожее на рисунок ниже.

Итак, теперь, когда мы подключили наш датчик газа, пришло время написать код и проверить его.
Код Arduino
Код очень прост, и, в основном, он просто читает аналоговое напряжение на выводе A0. При обнаружении дыма он выводит сообщение на мониторе последовательного порта. Посмотрите скетч, прежде чем мы начнем его подробный разбор.
#define MQ2pin (0)
float sensorValue; // переменная для хранения значения датчика
void setup()
{
Serial.begin(9600); // настроить последовательный порт на скорость 9600
Serial.println("Gas sensor warming up!");
delay(20000); // дать MQ-2 время для прогрева
}
void loop()
{
sensorValue = analogRead(MQ2pin); // прочитать аналоговый вход 0
Serial.print("Sensor Value: ");
Serial.print(sensorValue);
if(sensorValue > 300)
{
Serial.print(" | Smoke detected!");
}
Serial.println("");
delay(2000); // подождать 2 сек до следующего чтения
}
Скетч начинается с определения вывода Arduino, к которому подключен аналоговый вывод датчика газа MQ-2. Переменная под названием sensorValue
определена для хранения значения датчика.
#define MQ2pin (0)
float sensorValue; // переменная для хранения значения датчика
В функции setup()
мы инициализируем последовательную связь с ПК и ждем 20 секунд, чтобы дать датчику прогреться.
Serial.begin(9600); // настроить последовательный порт на скорость 9600
Serial.println("Gas sensor warming up!");
delay(20000); // дать MQ-6 время для прогрева
В функции loop()
значение датчика считывается функцией analogRead()
и отображается в мониторе последовательного порта.
sensorValue = analogRead(MQ2pin); // прочитать аналоговый вход 0
Serial.print("Sensor Value: ");
Serial.print(sensorValue);
Когда концентрация газа достаточно высока, датчик обычно выдает значение, превышающее 300. Мы можем отслеживать это значение с помощью оператора if
. И когда значение датчика превысит 300, мы отобразим сообщение «Smoke detected!» (Обнаружен дым!).
if(sensorValue > 300)
{
Serial.print(" | Smoke detected!");
}
Вывод в мониторе последовательного порта выглядит так:
