Введение в биполярные транзисторы (BJT)

Добавлено 29 августа 2017 в 19:10

Глава 4 – Биполярные транзисторы

Изобретение биполярного транзистора (БТ, BJT) в 1948 году привело к революции в электронике. Технические трюки, ранее требующие относительно больших, механически хрупких, потребляющих много энергии вакуумных ламп, неожиданно достигались с помощью крошечных, механически прочных, потребляющих мало энергии частиц кристаллического кремния. Эта революция позволила разработать и изготовить легкие, недорогие электронные устройства, которые мы сейчас считаем само собой разумеющимися. Понимание того, как работают транзисторы, имеет первостепенное значение для всех, кто интересуется электроникой.

Я собираюсь максимально сосредоточиться на практических назначении и применении биполярных транзисторов, а не исследовать квантовый мир теории полупроводников. Обсуждение электронов и дырок, по-моему, лучше оставить для другой главы. Здесь я хочу выяснить, как использовать эти компоненты, а не анализировать их внутренние детали. Я не хочу умалять важность понимания физики полупроводников, но иногда интенсивное фокусирование на физике твердотельных приборов умаляет понимание функций этих приборов на уровне компонентов. Однако, используя этот подход, я полагаю, что читатель обладает определенными минимальными знаниями о полупроводниках: о разнице между легированными "P" и "N" полупроводниками, о функциональных характеристиках PN (диодного) перехода, о значениях терминов "обратное смещение" и "прямое смещение". Если эти понятия вам не совсем ясны, то прежде, чем приступить к этой главе, лучше обратиться к предыдущим главам этой книги.

Биполярный транзистор состоит из трехслойного «сэндвича» из легированных полупроводниковых материалов, либо P-N-P на рисунке ниже (b), либо N-P-N на рисунке ниже (d). Каждый слой, образующий транзистор, имеет определенное название, и каждый слой снабжен проводным контактом для подключения к внешней схеме. Условные графические обозначения показаны на рисунке ниже (a) и (c).

Биполярный транзистор (БТ, BJT): PNP (a) условное обозначение и (b) физический макет, NPN (c) условное обозначение и (d) физический макет
Биполярный транзистор (БТ, BJT): PNP (a) условное обозначение и (b) физический макет, NPN (c) условное обозначение и (d) физический макет

Функциональной разницей между PNP транзистором и NPN транзистором является правильность (полярность) смещения перехода во время работы. Для любого заданного режима работы направления токов и полярности напряжений для каждого типа транзисторов находятся в точности противоположно друг другу.

Биполярные транзисторы работают как регуляторы тока, управляемые током. Другими словами, транзисторы ограничивают величину проходящего тока в соответствии с меньшим управляющим током. Основной поток электронов, который управляется, протекает от коллектора к эмиттеру или от эмиттера к коллектору в зависимости от типа транзистора (PNP и NPN, соответственно). Маленький поток электронов, который управляет основным током, протекает от базы к эмиттеру или от эмиттера к базе опять же в зависимости от типа транзистора (PNP и NPN, соответственно). В соответствии со стандартами обозначений полупроводниковых приборов стрелка всегда указывает в направлении, противоположном направлению потока электронов (рисунок ниже).

Маленький поток электронов база-эмиттер управляет большим потоком электронов коллектор-эмиттер, протекающим в направлении, противоположном направлению стрелки эмиттера
Маленький поток электронов база-эмиттер управляет большим потоком электронов коллектор-эмиттер, протекающим в направлении, противоположном направлению стрелки эмиттера (направления электрического тока, которое принято считать направлением от «+» к «–», совпадает с направлением стрелки эмиттера)

Биполярные транзисторы называются биполярными потому, что основной поток электронов через них происходи в двух типах полупроводникового материала: P и N, поскольку основной ток идет от эмиттера к коллектору (или наоборот). Другими словами, два типа носителей заряда – электроны и дырки – входят в состав этого основного тока через транзистор.

Как вы можете видеть, управляющий ток и управляемый ток всегда соединяются вместе в выводе эмиттера, и их электроны всегда текут против направления стрелки транзистора. Это первое и главное правило в использовании транзисторов: все токи должны протекать в правильном направлении, чтобы устройство работало как регулятор тока. Маленький управляющий ток обычно называют просто током базы, потому что он является единственным током, который проходит через вывод базы транзистора. И наоборот, большой управляемый ток называется током коллектора, потому что он является единственным током, который проходит через вывод коллектора. Ток эмиттера представляет собой сумму тока базы и тока коллектора в соответствии с законом токов Кирхгофа.

Отсутствие тока через базу транзистора выключает его подобно разомкнутому ключу и предотвращает протекание тока через коллектор. Ток базы превращает транзистор в что-то похожее на замкнутый ключ и дает пропорциональному значению тока пройти через коллектор. Ток коллектора в основном ограничивается током базы, независимо от величины напряжения, доступного для его раскачки. В следующем разделе будет более подробно рассмотрено использование биполярных транзисторов в качестве переключающих элементов.

Подведем итоги:

  • Биполярные транзисторы названы так потому, что контролируемый ток должен проходит через два типа полупроводникового материала: P и N. Ток в разных частях транзистора состоит из обоих потоков: и электронов, и дырок.
  • Биполярные транзисторы состоят либо из P-N-P, либо из N-P-N полупроводниковой «сэндвичной» структуры.
  • Три вывода биполярного транзистора называются эмиттер, база и коллектор.
  • Транзисторы функционируют как регуляторы тока, позволяя небольшому току управлять большим током. Величина тока, доступного между коллектором и эмиттером, в основном определяется величиной тока, протекающего между базой и эмиттером.
  • Для правильного функционирования транзистора в качестве регулятора тока, управляющий (базовый) ток и управляемый (коллекторный) ток должны идти в правильных направлениях: складываться в эмиттере, поток электронов должен быть направлен противоположно направлению стрелки эмиттера, и, следовательно, направление электрического тока (протекающего от «+» к «–») должно совпадать с направлением стрелки эмиттера.

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.


Сообщить об ошибке