Подключение входа и выхода (биполярные транзисторы)

Добавлено 1 января 2018 в 19:25

Чтобы решить проблему создания необходимого постоянного напряжения смещения для входного сигнала усилителя, не прибегая к установке батареи последовательно с источником сигнала переменного напряжения, мы использовали делитель напряжения, подключенный к источнику питания постоянного напряжения. Чтобы заставить его работать в сочетании с входным сигналом переменного напряжения, мы "подключили" источник сигнала к делителю через конденсатор, который действовал как фильтр верхних частот. При такой фильтрации низкий импеданс источника сигнала переменного напряжения не может "закоротить" на корпус напряжение, падающее на нижнем резисторе делителя напряжения. Решение простое, но не без недостатков.

Наиболее очевидным является тот факт, что использование конденсатора фильтра для подключения источника сигнала к усилителю означает, что усилитель может усиливать сигналы только переменного напряжения. Постоянное напряжение, подаваемое на вход, будет блокироваться конденсатором связи так же сильно, как напряжение смещения с делителя блокируется от источника входного сигнала. Кроме того, поскольку емкостное реактивное сопротивление зависит от частоты, низкочастотные сигналы переменного тока будут усиливаться не так сильно, как высокочастотные сигналы. Несинусоидальные сигналы будут искажаться, поскольку конденсатор реагирует по-разному на каждую из составляющих гармоник сигнала. Самым заметным примером этого может служить низкочастотный прямоугольный сигнал на рисунке ниже.

Емкостная связь вызывает искажение низкочастотного прямоугольного сигнала
Емкостная связь вызывает искажение низкочастотного прямоугольного сигнала

Кстати, эта же проблема возникает, когда входы осциллографа устанавливаются в режим "AC" (закрытый вход), как показано на рисунке ниже. В этом режиме конденсатор связи последовательно соединен с измеряемым сигналом, чтобы исключить любое смещение отображаемой формы сигнала по вертикали из-за постоянного напряжения в этом сигнале. Это отлично работает, когда составляющая переменного напряжения в измеряемом сигнале имеет довольно высокую частоту, и конденсатор не оказывает большого сопротивления сигналу. Однако если сигнал имеет низкую частоту или содержит значительные уровни гармоник в широком диапазоне частот, отображение формы сигнала на осциллографе будет неточным (рисунок ниже). Низкочастотные сигналы можно просмотреть, установив осциллограф в режим "DC" (открытый вход).

Со связью по постоянному току осциллограф правильно показывает форму прямоугольного сигнала, поступающего от генератора сигналов
Со связью по постоянному току осциллограф правильно показывает форму прямоугольного сигнала, поступающего от генератора сигналов
Низкие частоты: при использовании связи по переменному току фильтрация верхних частот конденсатором связи искажает форму прямоугольного сигнала, поэтому осциллограмма не является точным представлением реального сигнала
Низкие частоты: при использовании связи по переменному току фильтрация верхних частот конденсатором связи искажает форму прямоугольного сигнала, поэтому осциллограмма не является точным представлением реального сигнала

В приложениях, где ограничения емкостной связи (рисунок выше) недопустимы, можно использовать другое решение: прямое соединение. Прямое соединение позволяет избежать использования конденсаторов или любых других частотно-зависимых компонентов связи в пользу резисторов. Схема усилителя с прямым подключением показана на рисунке ниже.

Непосредственное подключение усилителя: прямое соединение к громкоговорителю
Непосредственное подключение усилителя: прямое соединение к громкоговорителю

Этот вид связи, без конденсатора для фильтрации входного сигнала, не зависит от частоты. Сигналы постоянного и переменного напряжения будут усиливаться транзистором с одним и тем же коэффициентом усиления (сам транзистор может иметь тенденцию усиливать некоторые частоты лучше других, но это совсем другая тема!).

Если прямая связь работает как с постоянным, так и переменным напряжениями, то зачем использовать емкостную связь? Одна из причин может заключаться в том, чтобы избежать нежелательного постоянного напряжения смещения в усиливаемом сигнале. Некоторые сигналы переменного тока могут быть наложены на неконтролируемое постоянное напряжение прямо в источнике, а неконтролируемое постоянное напряжение сделает невозможным надежное смещение транзистора. Фильтрация верхних частот, выполняемая конденсатором связи, в этом случае очень пригодится, чтобы избежать проблем со смещением.

Другой причиной использования емкостной связи, вместо прямой, является малая величина вносимого ею затухания сигнала. Прямое соединение через резистор обладает недостатком – уменьшением или ослаблением уровня входного сигнала, поэтому только часть сигнала достигает базы транзистора. Во многих приложениях необходимо вносить какую-то величину затухания, чтобы избежать «перегрузки» транзистора по уровню входного сигнала, что могло бы ввести транзистор в режимы отсечки и насыщения, поэтому любое ослабление в схеме связи в любом случае полезно. Однако в некоторых приложениях для максимального усиления по напряжению требуется отсутствие потерь сигнала во входной цепи базы транзистора, а прямое соединение с делителем напряжения смещения не удовлетворяет этому требованию.

До сих пор мы обсудили пару методов подключения входного сигнала к усилителю, но не решили проблему связи выхода усилителя с нагрузкой. Пример схемы, используемый для иллюстрации входной связи, хорошо послужит и для иллюстрации проблем, связанных с выходной связью.

В нашем примере схемы нагрузка – это громкоговоритель. Большинство динамиков являются электромагнитными устройствами: то есть они используют силу, создаваемую легкой электромагнитной катушкой, подвешенной в сильном поле постоянного магнита, для перемещения конуса из тонкой бумаги или пластика, создавая в воздухе колебания, которые наши уши интерпретируют как звук. Приложенное напряжение одной полярности перемещает конус наружу, а напряжение противоположной полярности будет перемещать конус внутрь. Чтобы использовать полную свободу движения конуса, на динамик должно поступать чистое (без смещения) переменное напряжение. Смещение постоянным напряжением приложенное к катушке динамика смещает конус от его естественного центрального положения, что ограничивает его движение назад и вперед, которое он мог бы выдержать от приложенного переменного напряжения без повреждений. Однако в нашем примере схемы (рисунок выше) к динамику прикладывается напряжение только одной полярности, поскольку динамик соединен последовательно с транзистором, который может проводить ток только в одном направлении. Это было бы неприемлемо для любого мощного аудиоусилителя.

Нам нужно как-то изолировать динамик от смещения постоянным напряжением от тока коллектора, чтобы он получал только переменное напряжение. Одним из способов достижения этой цели является соединение коллекторной схемы транзистора с динамиком через трансформатор (рисунок ниже).

Трансформаторная связь отделяет постоянное напряжение от нагрузки (динамика)
Трансформаторная связь отделяет постоянное напряжение от нагрузки (динамика)

Напряжение, наводимое во вторичной (со стороны динамика) обмотке трансформатора, будет строго зависеть от изменений тока коллектора, поскольку взаимная индукция трансформатора работает только на изменениях тока обмотки. Другими словами, только переменная составляющая тока коллектора будет подключена к вторичной обмотке, питающей динамик. Динамик будет «видеть» на своих выводах истинный переменный ток без какого-либо постоянного смещения.

Выходная трансформаторная связь работает и обладает дополнительным преимуществом – возможностью обеспечить согласование импедансов транзисторной схемы и катушки динамика при заданных соотношениях обмоток. Однако трансформаторы могут быть большими и тяжелыми, особенно для мощных приложений. Кроме того, сложно спроектировать трансформатор для обработки сигналов в широком диапазоне частот, что почти всегда требуется в аудиоприложениях. Хуже того, постоянный ток через первичную обмотку добавляет намагничивания сердечника только с одной полярностью, что приводит к тому, что сердечник сильнее насыщается в одном полупериоде полярности переменного тока, чем в другом. Эта проблема напоминает ту, с которой мы столкнулись при непосредственном последовательном подключении динамика к транзистору: смещение постоянным током приводит к ограничению амплитуды выходного сигнала, которую система может выдавать без искажений. Как правило, трансформатор может быть сконструирован таким образом, чтобы обрабатывать без проблем большее значение постоянного тока смещения, чем громкоговоритель, поэтому в большинстве случаев трансформаторная связь по-прежнему является жизнеспособным решением. В качестве примера трансформаторной связи смотрите связь между Q4 и динамиком в схеме первого массового радиоприемника Regency TR1 (глава 9).

Другой способ изолировать динамик от смещения постоянным током в выходном сигнале состоит в том, чтобы немного изменить схему и использовать конденсатор связи аналогично подаче на усилитель входного сигнала (рисунок ниже).

Конденсатор связи не пропускает постоянный ток в нагрузку
Конденсатор связи не пропускает постоянный ток в нагрузку

Схема на рисунке выше напоминает более традиционную схему усилителя с общим эмиттером, причем коллектор транзистора подключен к аккумулятору через резистор. Конденсатор действует как фильтр верхних частот, передавая большую часть переменного напряжения на громкоговоритель, блокируя всё постоянное напряжение. Опять же, номинал этого конденсатора связи выбирается таким образом, чтобы его импеданс на частоте ожидаемого сигнала был минимален.

Блокировка постоянного напряжения от выхода усилителя, будь то через трансформатор или конденсатор, полезна не только при соединении усилителя с нагрузкой, но и при соединении одного усилителя с другим усилителем. «Каскадные» усилители часто используются для получения большей мощности, чем та, что была бы возможна при использовании одного транзистора (рисунок ниже).

Три каскада усилителей с общим эмиттером, связанных с помощью конденсаторов
Три каскада усилителей с общим эмиттером, связанных с помощью конденсаторов

Хотя каждый каскад можно связать с другим напрямую (через резистор, а не через конденсатор), это сделает весь усилитель очень чувствительным к изменениям напряжения смещения первого каскада, поскольку это постоянное напряжение будет усиливаться вместе с сигналом переменного тока до последнего каскада. Другими словами, смещение первого каскада повлияет на смещение второго каскада и так далее. Однако если каскады соединены с помощью емкостной связи (как показано на рисунке выше), смещение одного каскада не влияет на смещение следующего каскада, поскольку постоянное напряжение блокируется от перехода на следующий каскад.

Трансформаторная связь между каскадами также возможна, но используется реже из-за некоторых проблем, присущих трансформаторам и упомянутым ранее. Одним из примечательных исключений из этого правила являются радиочастотные усилители (рисунок ниже) с небольшими трансформаторами связи, имеющими воздушные сердечники (что делает их невосприимчивыми к эффектам насыщения), которые являются частью резонансной системы для блокировки частот нежелательных гармоник от перехода на следующие каскады. Использование резонансных схем предполагает, что частота сигнала остается постоянной, что характерно для радиосхем. Кроме того, эффект «маховика» LC-контуров позволяет работать для большей эффективности в классе C.

Пример трансформаторной связи в 3-х каскадном резонансном радиочастотном усилителе
Пример трансформаторной связи в 3-х каскадном резонансном радиочастотном усилителе

Обратите внимание на трансформаторную связь между транзисторами Q1, Q2, Q3 и Q4 в схеме Regency TR1 в главе 9. Три трансформатора промежуточной частоты (ПЧ) в пунктирных прямоугольниках проводят сигнал ПЧ от коллектора к базе следующего транзистора усилителя ПЧ. Усилители промежуточной частоты представляют собой радиочастотные усилители, хотя и на частоте, отличающейся от той, что подается на антенный РЧ (RF) вход.

Сказав всё это, следует упомянуть, что в многокаскадной схеме транзисторного усилителя возможно использование прямого соединения. В тех случаях, когда усилитель, как ожидается, будет обрабатывать сигналы постоянного тока, это единственная альтернатива.

Тенденция электроники к более широкому использованию интегральных микросхем стимулировала использование прямого соединения, вместо емкостной и трансформаторной связи. Единственным легко производимым компонентом интегральной схемы является транзистор. Могут также производиться стабильные резисторы. Хотя транзисторы всё же предпочтительнее. Возможны и интегральные конденсаторы, но только на несколько десятков пикофарад. Большие конденсаторы «не интегрируемы». При необходимости они могут использоваться в качестве внешних компонентов. То же самое касается и трансформаторов. Поскольку интегральные транзисторы являются недорогими, то ими по максимуму заменяются проблемные конденсаторы и трансформаторы. В микросхемах, как можно больше, используются прямые соединения. Если это необходимо, то при конструировании микросхем учитываются внешние конденсаторы и трансформаторы. Результатом этого является то, что современный радиоприемник на микросхеме (смотрите главу 9) совсем не похож на первоначальный радиоприемник Regency TR1 (глава 9).

Даже дискретные транзисторы недороги по сравнению с трансформаторами. Громоздкие аудиотрансформаторы могут быть заменены транзисторами. Например, схема с общим коллектором (эмиттерный повторитель) может служить для согласования выходного импеданса с такой низкоомной нагрузкой, как динамик. Также большие конденсаторы связи возможно заменить на транзисторные схемы.

Мы по-прежнему хотели бы проиллюстрировать текст с помощью аудиоусилителей с трансформаторной связью. Эти схемы просты. В них небольшое количество компонентов. И эти схемы хорошо подходят для обучения – они просты для понимания.

Схема на рисунке ниже (a) представляет собой упрощенную схему двухтактного аудиоусилителя с трансформаторной связью. В двухтактных парах транзисторы поочередно усиливают положительную и отрицательную составляющие входного сигнала. При отсутствии сигнала на входе ни один из транзисторов не проводит электрический ток. Положительный входной сигнал даст положительный сигнал на верхнем конце вторичной обмотки входного трансформатора, что заставит верхний транзистор проводить электрический ток. Отрицательный сигнал на входе создаст положительный сигнал на нижнем конце вторичной обмотки входного трансформатора, который приведет нижний транзистор в режим проводимости. Таким образом, транзисторы усиливают чередующиеся полупериоды сигнала. Как показано на рисунке ниже (a), ни один из транзисторов не будет проводить ток при входном сигнале ниже 0,7 В(пик). Практическая схема соединяет среднюю точку на вторичной обмотке не с корпусом, а с резисторным делителем напряжения на 0,7 В (или выше), чтобы перевести оба транзистора с помощью смещения в класс B.

(a) Двухтактный усилитель с трансформаторной связью. (b) Усилитель на комплементарной паре с прямым соединением заменяет трансформаторы на транзисторы.
(a) Двухтактный усилитель с трансформаторной связью. (b) Усилитель на комплементарной паре с прямым соединением заменяет трансформаторы на транзисторы.

Схема на рисунке выше (b) – это современная версия, которая заменяет трансформаторы на транзисторы. Транзисторы Q1 и Q2 являются усилителями с общими эмиттерами, инвертирующими усиленный сигнал от базы к коллектору. Транзисторы Q3 и Q4 известны как комплементарная пара, потому что эти транзисторы NPN и PNP усиливают чередующиеся полуволны сигнала (положительную и отрицательную, соответственно). Параллельное соединение баз позволяет получить фазовое разделение без входного трансформатора (как на рисунке (a)). Громкоговоритель является эмиттерной нагрузкой Q3 и Q4. Параллельное соединение эмиттеров NPN и PNP транзисторов исключает необходимость в выходном трансформаторе со средней точкой (как на рисунке (a)). Низкий выходное сопротивление эмиттерного повторителя служит для согласования 8-омного сопротивления динамика с предыдущим каскадом с общим эмиттером. Таким образом, недорогие транзисторы заменяют собой трансформаторы. Полную схему смотрите схему аудио усилителя 3 Вт с комплементарной симметрией и прямой связью в главе 9.

Подведем итоги:

  • Емкостная связь на входе усилителя действует как фильтр верхних частот. Это приводит к тому, что на более низких частотах входного сигнала коэффициент усиления по напряжению усилителя уменьшается. Усилители с емкостной связью практически не реагируют на входные сигналы постоянного тока.
  • Прямое соединение с последовательным резистором вместо последовательного конденсатора устраняет проблему частотно-зависимого усиления, но имеет недостаток – уменьшение усиления для всех частот сигнала за счет ослабления входного сигнала.
  • Трансформаторы и конденсаторы могут использоваться для соединения выхода усилителя и нагрузки, чтобы исключить попадание на нагрузку постоянного напряжения. Многокаскадные усилители часто используют емкостную связь между каскадами, чтобы устранить проблемы влияния смещения одного каскада на смещение следующего.

Теги

Биполярный транзисторГальваническая развязкаДвухтактный усилительЕмкостная связьОбучениеРазвязкаТрансформаторная развязкаТрансформаторная связьУсилитель на комплементарной пареЭлектроника

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.