Активный режим работы биполярного транзистора

Добавлено 30 сентября 2017 в 15:13

Глава 4 – Биполярные транзисторы

Когда транзистор находится в полностью выключенном (закрытом) состоянии (как разомкнутый ключ), говорится, что он в режиме отсечки. И наоборот, когда он полностью проводит ток между эмиттером и коллектором (пропускает ток такой величины, какую могут позволить источник питания и нагрузка), говорится, что он находится в режиме насыщения. Эти два режима работы были изучены ранее при использовании транзистора в качестве ключа.

Однако биполярные транзисторы не должны ограничиваться этими двумя экстремальными режимами работы. Как мы узнали в предыдущем разделе, ток базы «открывает клапан» для ограниченного количества тока через коллектор. Если это ограничение для управляемого тока больше нуля, но меньше максимального значения, разрешенного источником питания и схемой нагрузки, транзистор «удерживает» значение тока коллектора в режиме где-то между режимами отсечки и насыщения. Этот режим работы называется активным режимом.

По аналогии с автомобилем: отсечка – это состояние отсутствия движущей силы, создаваемой механическими частями автомобиля, чтобы заставить его двигаться. В режиме отсечки включается тормоз (нулевой ток базы), предотвращающий движение (ток коллектора). Активный режим – это режим круиз-контроль автомобиля на постоянной контролируемой скорости (постоянный, контролируемый ток коллектора), которую устанавливает водитель. Насыщение – это подъем автомобиля на крутой холм, который мешает ему двигаться так быстро, как пожелает водитель. Другими словами «насыщенный» автомобиль – это автомобиль с полностью вдавленной в пол педалью газа (ток базы допускает протекание тока коллектора, большего, чем может быть обеспечено схемой источника питания и нагрузки).

Давайте соберем схему для моделирования в SPICE, чтобы продемонстрировать, что происходит, когда транзистор находится в активном режиме работы.

Схема для SPICE моделирования «активного режима» (список соединений приведен ниже)
Схема для SPICE моделирования «активного режима» (список соединений приведен ниже)
bipolar transistor simulation
i1 0 1 dc 20u
q1 2 1 0 mod1
vammeter 3 2 dc 0
v1 3 0 dc
.model mod1 npn
.dc v1 0 2 0.05 
.plot dc i(vammeter) 
.end 

«Q» – это стандартное буквенное обозначение для транзистора на принципиальной схеме (в России по ГОСТу принято обозначение VT), так же как «R» для резистора, а «C» для конденсатора. В этой схеме у нас есть NPN-транзистор, питаемый от батареи (V1) и управляемый источником тока (I1). Источник тока – это устройство, которое выдает заданную величину тока, генерируя такое напряжение на своих выводах, которое необходимо, чтобы обеспечить точную величину тока, протекающего через него. Как известно, источники тока трудно найти в природе (в отличие от источников напряжения, которые, наоборот, пытаются поддерживать постоянное значение напряжения, выдавая необходимое значение тока для выполнения этой задачи), но могут быть смоделированы с помощью небольшого набора электронных компонентов. Как мы сейчас увидим, транзисторы сами имеют тенденцию имитировать поведение, поддерживающее постоянную величину тока, как и источники тока, с помощью своей способности стабилизировать ток на фиксированном значении.

При SPICE моделировании мы установим источник тока в постоянное значение 20 мкА, затем будем изменять напряжение источника напряжения (V1) в диапазоне от 0 до 2 вольт и наблюдать, какой ток будет проходить через него. «Фиктивная» батарея (Vамперметр) на рисунке выше с выходным напряжением 0 вольт служит только для того, чтобы предоставить SPICE программе элемент схемы для измерения тока.

Изменение напряжения коллектора от 0 до 2 В при постоянном токе базы 20 мкА дает в результате постоянный ток коллектора 2 мА в режиме насыщения
Изменение напряжения коллектора от 0 до 2 В при постоянном токе базы 20 мкА дает в результате постоянный ток коллектора 2 мА в режиме насыщения

Постоянный ток базы 20 мкА устанавливает предельное значение для тока коллектора в 2 мА, что в точности в 100 раз больше. Обратите внимание, как выравнивается график тока коллектора (на рисунке выше) при изменении напряжения батареи от 0 до 2 вольт. Единственные исключение из этого совершенно ровного графика – в самом начале, когда напряжение батареи увеличивается от 0 до 0,25 вольта. На этом участке ток коллектора быстро растет от 0 до предельных 2 мА.

Посмотрим, что произойдет, если мы будем изменять напряжение батареи в более широком диапазоне, на этот раз от 0 до 50 вольт. Ток базы будем поддерживать на постоянном уровне 20 мкА (рисунок ниже).

Изменение напряжения коллектора от 0 до 50 В при постоянном токе базы 20 мкА дает в результате постоянный ток коллектора 2 мА в режиме насыщения
Изменение напряжения коллектора от 0 до 50 В при постоянном токе базы 20 мкА дает в результате постоянный ток коллектора 2 мА (список соединений приведен ниже)
bipolar transistor simulation
i1 0 1 dc 20u
q1 2 1 0 mod1
vammeter 3 2 dc 0
v1 3 0 dc
.model mod1 npn
.dc v1 0 50 2
.plot dc i(vammeter) 
.end 

Тот же результат! Ток коллектора на рисунке выше удерживается точно на значении 2 мА, хотя напряжение (V1) изменяется от 0 до 50 вольт. Из нашего примера моделирования видно, что напряжение коллектор-эмиттер мало влияет на ток коллектора, за исключением очень низких уровней (чуть выше 0 вольт). Транзистор действует как стабилизатор тока, обеспечивая протекание через коллектор тока величиной 2 мА и не более.

Теперь давайте посмотрим, что произойдет, если мы будем увеличивать управляющий ток (I1) от 20 мкА до 75 мкА, снова изменяя напряжение батареи (V1) от 0 до 50 вольт, и выводя на график значения тока коллектора (рисунок ниже).

Изменение напряжения коллектора от 0 до 50 В (.dc v1 0 50 2) при постоянном токе базы 75 мкА дает в результате постоянный ток коллектора 7,5 мА. Другие графики генерируются при изменении значений тока  (i1 15u 75u 15u) в операторе анализа DC (.dc v1 0 50 2 i1 15u 75u 15u)  (список соединений приведен ниже)
Изменение напряжения коллектора от 0 до 50 В (.dc v1 0 50 2) при постоянном токе базы 75 мкА дает в результате постоянный ток коллектора 7,5 мА. Другие графики генерируются при изменении значений тока (i1 15u 75u 15u) в операторе анализа DC (.dc v1 0 50 2 i1 15u 75u 15u) (список соединений приведен ниже)
bipolar transistor simulation
i1 0 1 dc 75u
q1 2 1 0 mod1
vammeter 3 2 dc 0
v1 3 0 dc
.model mod1 npn
.dc v1 0 50 2 i1 15u 75u 15u
.plot dc i(vammeter)
.end 

Неудивительно, что SPICE дает нам аналогичный график: прямая линия, закрепившаяся на этот раз на 7,5 мА – ровно в 100 раз больше тока базы – в диапазоне напряжений батареи от чуть выше 0 вольт до 50 вольт. По-видимому, ток базы является решающим фактором для тока коллектора, напряжение батареи V1 не имеет значения, если оно превышает определенный минимальный уровень.

Эта связь между напряжением и током полностью отличается от того, что мы привыкли видеть на резисторе. Для резистора ток увеличивается линейно по мере увеличения напряжения. Здесь, для транзистора, ток от эмиттера к коллектору остается ограниченным на фиксированном максимальном значении независимо от того, насколько сильно увеличивается напряжение между эмиттером и коллектором.

Часто полезно накладывать несколько характеристик зависимости ток коллектора / напряжение для разных токов базы на одном графике, как на рисунке ниже. Набор характеристик, подобный этому (для каждого значения тока базы построен отдельный график), для конкретного транзистора называется выходными характеристиками транзистора:

Зависимость тока коллектора от напряжения между коллектором и эмиттером для разных токов базы
Зависимость тока коллектора от напряжения между коллектором и эмиттером для разных токов базы

Каждая кривая на графике отражает ток коллектора транзистора, построенный для диапазона напряжений коллектор-эмиттер, для заданного значения тока базы. Поскольку транзистор стремится действовать как стабилизатор тока, ограничивая ток коллектора до пропорции, установленной током базы, полезно выразить эту пропорцию в качестве стандартного показателя работы транзистора. В частности, отношения тока коллектора к току базы известно как коэффициент бета (обозначенный греческой буквой β):

\[\beta = {I_{коллектор} \over I_{база}}\]

β также известен как hfe или h21э

Иногда коэффициент β обозначается как "hfe" или "h21э", метка, используемая в ветви математического анализа полупроводниковых приборов, известной как «гибридные параметры» или h-параметры, которая стремится достичь точных прогнозов работы транзисторов с помощью подробных уравнений. Переменных гибридных параметром много, но каждый из них обозначается буквой "h" и конкретным индексом. Переменная "hfe" ("h21э") представляет собой просто еще один (стандартизированный) способ выражения отношения тока коллектора к току базы и взаимозаменяема с “β”. Коэффициент β является безразмерной величиной.

β для любого транзистора определяется его конструкцией: он не может быть изменен после изготовления. Редко бывает, что β у двух транзисторов одной и той же конструкции точно совпадают из-за различий физических переменных, влияющих на этот коэффициент. Если работа схемы зависит от равенства β у нескольких транзисторов, за дополнительную плату могут быть приобретены «согласованные наборы» транзисторов. Однако, как правило, проектирование с такими зависимостями считается плохой практикой.

β транзистор не остается одинаковым во всех условиях эксплуатации. Для реального транзистора коэффициент β может изменяться в 3 раза в пределах его рабочих токов. Например, транзистор с объявленным значением β, равным 50, в реальных тестах отношения Iк/Iб может дать значения от 30 до 100, в зависимости от величины тока коллектора, температуры транзистора, частоты усиливаемого сигнала и других факторов. Для целей обучения для любого заданного транзистора достаточно принимать коэффициент β постоянным; и понимать, что реальная жизнь не так проста!

Иногда для понимания полезно «моделировать» сложные электронные компоненты с помощью набора более простых и понятных компонентов. Модель на рисунке ниже используется во многих вводных текстах по электронике.

Простая диодно-резисторная модель транзистора
Простая диодно-резисторная модель транзистора

Эта модель отображает транзистор как комбинацию диода и реостата (переменного резистора). Ток через диод база-эмиттер управляет сопротивлением реостата коллектор-эмиттер (как подразумевается пунктирной линией, соединяющей два компонента), тем самым контролируя ток коллектора. На рисунке приведена модель NPN-транзистора, но PNP-транзистор будет отличаться не сильно (будет изменено только направление диода база-эмиттер). Эта модель преуспевает в пояснении базовой концепции усиления транзистора: как сигнал тока базы может осуществлять управление током коллектора. Однако мне эта модель не нравится, потому что она неверно передает понятие установленного значения сопротивления коллектор-эмиттер для заданного значения тока базы. Если бы она была верна, транзистор не стабилизировал бы ток коллектора, как показывают графики выходных характеристик. Вместо характеристик тока коллектора, выровненных на графике после быстрого роста по мере увеличения напряжения коллектор-эмиттер, ток коллектора продолжал бы расти прямо пропорционально напряжению коллектор-эмиттер, и мы бы увидели на графике неуклонно растущие прямые.

В более продвинутых учебниках часто встречается более подходящая модель транзистора (рисунок ниже).

Модель транзистора на основе источника тока
Модель транзистора на основе источника тока

Она отображает транзистор в виде комбинации диода и источника тока, причем выход источника тока задается умножением тока базы на коэффициент β. Эта модель гораздо более точна при отображении истинных входных/выходных характеристик транзистора: ток базы устанавливает определенное значение тока коллектора, а не определенное сопротивление коллектор-эмиттер, как предполагает первая модель. Кроме того, эта модель предпочтительна при проведении анализа транзисторных схем, причем источник тока является хорошо понятным теоретическим компонентом. К сожалению, использование источника тока для моделирования контролирующего ток поведения транзистора может вводить в заблуждение: транзистор никогда не будет служить источником электрической энергии. Источник тока не моделирует тот факт, что его источником энергии является внешний источник питания, как у усилителя.

Подведем итоги:

  • Говорят, что транзистор находится в активном режиме, если он работает где-то между полностью открытым режимом (насыщение) и полностью закрытым режимом (отсечка).
  • Ток базы регулирует ток коллектора. Под регулированием мы подразумеваем, что ток коллектора не может превышать значение, которое устанавливаемое током базы.
  • Отношение между током коллектора и током базы называется «бета» (β) или hfe или h21э.
  • Коэффициенты β у всех транзисторов различны; β изменяется в зависимости от условий эксплуатации.

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.


Сообщить об ошибке