О децибелах для радиоинженеров

Добавлено 26 мая 2018 в 15:52

Узнайте о децибелах и их вариациях в контексте радиочастотного проектирования и тестирования.

Радиотехника, как и все научные дисциплины и подразделы, включает в себя довольно много специализированной терминологии. Одним из наиболее важных слов, которые вам понадобятся при работе в мире радиочастот, является «дБ» (и некоторые его варианты). Если вы глубоко закрепились в проектировании радиочастотных систем, то можете обнаружить, что слово «дБ» становится вам таким же знакомым, как и ваше собственное имя.

Как вы, наверное, знаете, дБ означает децибел. Это логарифмическая единица, которая обеспечивает удобный способ работы с отношениями, такими как отношение между амплитудами входного и выходного сигналов.

Отношение напряжений сигналов на выходе и входе усилителя
Отношение напряжений сигналов на выходе и входе усилителя

Мы не будем описывать общую информацию о децибелах, потому что она уже доступна на этой странице учебника «Основы электроники и схемотехники». Вместо этого мы сосредоточимся на практических аспектах децибелов в конкретном контексте радиочастотных систем.

Относительный, не абсолютный

Легко забыть, что дБ является относительной единицей. Вы не можете сказать: «Выходная мощность составляет 10 дБ».

Напряжение является абсолютной величиной, потому что мы всегда говорим о разности потенциалов между двумя точками; обычно мы имеем в виду потенциал одного узла относительно узла земли 0 В. Ток также является абсолютной величиной, поскольку единица измерения (ампер) включает в себя определенное количество заряда в течение определенного количества времени. Децибел, напротив, это единица измерения, которая включает в себя логарифм отношения между двумя числами. Ярким примером является коэффициент усиления усилителя: если мощность входного сигнала равна 1 Вт, а мощность выходного сигнала равна 5 Вт, мы имеем коэффициент 5:

\[10 \log_{10} \left( { P_{вых} \over P_{вх} } \right) = 10 \log_{10} (5) \approx 7 дБ\]

Таким образом, этот усилитель обеспечивает усиление по мощности 7 дБ, то есть соотношение между мощностью выходного сигнала и мощностью входного сигнала может быть выражено как 7 дБ.

Почему дБ?

Конечно, можно было бы проектировать и тестировать радиочастотные системы без использования дБ, но на практике дБ используются везде. Одно из преимуществ заключается в том, что шкала дБ позволяет выражать очень большие отношения без использования очень больших чисел: усиление по мощности в 1 000 000 раз составляет всего 60 дБ. Кроме того, при использовании дБ легко вычисляется общий коэффициент усиления или потерь в цепи прохождения сигнала, поскольку отдельные значения в дБ просто складываются (тогда как, если бы мы работали с обычными отношениями, нам потребовалось бы умножение).

Еще одно преимущество – это то, что мы знаем из нашего опыта работы с фильтрами. Радиочастотные системы вращаются вокруг частот и различных способов генерации, управления или воздействия на эти частоты с помощью компонентов и паразитных элементов схемы. Шкала в дБ в подобном контексте удобна, потому что графики частотных характеристик интуитивно понятны и визуально информативны, когда ось частот использует логарифмический масштаб, а ось амплитуды использует шкалу в дБ.

Диаграмма Боде, показывающая амплитудно-частотные характеристики различных полосовых фильтров
Диаграмма Боде, показывающая амплитудно-частотные характеристики различных полосовых фильтров

Когда дБ абсолютны?

Мы установили, что дБ является отношением и, следовательно, не может описывать абсолютные значения мощности и амплитуды сигнала. Однако было бы неудобно постоянно переключаться между значениями в дБ и не в дБ, и, возможно, именно поэтому радиоинженеры ввели единицу измерения дБм (dBm).

Мы можем избежать проблемы «только отношение», просто создав новую единицу измерения, которая всегда будет содержать опорное значение. В случае дБм опорное значение равно 1 мВт. Таким образом, если у нас есть сигнал 5 мВт, и мы хотим оставаться в области дБ, мы можем выразить мощность этого сигнала как 7дБм:

\[10 \log_{10} \left( { 5 мВт \over 1 мВт } \right) = 10 \log_{10} (5) \approx 7 дБм\]

Вы определенно хотите ознакомиться с концепцией дБм. Это стандартная единица, используемая в реальной разработке радиочастотных систем, и она очень удобна, когда вы, например, вычисляете энергетический баланс линии связи, поскольку усиления и потери, выраженные в дБ, могут просто складываться и вычитаться из выходной мощности, выраженной в дБм.

Существует также единица дБВт (dBW); в качестве опорного значения она использует 1 Вт вместо 1 мВт. В настоящее время большинство радиоинженеров работает с относительно маломощными системами, и это, вероятно, объясняет, почему дБм встречается чаще.

Больше вариаций дБ

Две других единицы измерения, основанных на дБ, – это дБн (dBc) и дБи (dBi).

Вместо фиксированного значения, такого как 1 мВт, дБн (dBc) использует в качестве опорного сигнала уровень несущей сигнала. Например, фазовый шум (смотрите второй раздел данной главы) выражается в единицах дБн/Гц (dBc/Hz); первая часть этой единицы измерения указывает, что мощность фазового шума на определенной частоте измеряется относительно мощности несущей (в этом случае «несущая» относится к мощности сигнала на номинальной частоте).

Идеализированная точечная антенна принимает определенное количество энергии от схемы передатчика и равномерно излучает ее во всех направлениях. Считается, что эти «изотропные» антенны имеют нулевой коэффициент усиления и нулевые потери.

Однако, другие антенны могут быть сконструированы таким образом, чтобы концентрировать излучаемую энергию в определенных направлениях, и в этом смысле антенна может иметь «усиление». Антенна на самом деле не добавляет мощности к сигналу, но эффективно увеличивает переданную мощность путем концентрации электромагнитного излучения в соответствии с направлением системы связи (очевидно, что более практично, когда разработчик антенны знает пространственную взаимосвязь между передатчиком и приемником).

Здесь вы можете увидеть неравномерное распределение излучаемой энергии, которая приводит к усилению в прямом направлении (т.е., 0°)
Здесь вы можете увидеть неравномерное распределение излучаемой энергии, которая приводит к усилению в прямом направлении (т.е., 0°)

Единица измерения дБи (dBi) позволяет производителям антенн указывать «коэффициент усиления», который использует популярную шкалу дБ. Как всегда, когда мы работаем с дБ, нам необходимо отношение, а в случае с дБи (dBi) коэффициент усиления антенны выражается через опорное усиление изотропной антенны.

Некоторые антенны (например, те, которые сопровождаются параболическим зеркалом, «тарелкой») имеют значительный коэффициент усиления, и поэтому они могут внести нетривиальный вклад в расстояние и производительность радиочастотной системы.

Резюме

  • Шкала дБ представляет собой метод выражения отношений между двумя величинами. Она удобна и широко используется в контексте радиочастотного проектирования и тестирования.
  • Хотя значения в дБ по своей природе относительны, в шкале дБ могут быть выражены и абсолютные величины с помощью единиц измерения, которые включают в себя стандартизированное опорное значение.
  • Наиболее распространенной абсолютной единицей измерения в дБ является дБм (dBm), который выражает мощность сигнала в дБ относительно 1 мВт.
  • Единица измерения дБн (dBc) выражает мощность по отношению к мощности сигнала, связанного с измерением (с несущей).
  • Единица измерения дБи (dBi) выражает коэффициент усиления антенны относительно отклика идеализированной точечной (изотропной) антенны.

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.


Сообщить об ошибке