Электроны и «дырки»

Добавлено 6 февраля 2016 в 17:10

Глава 2 - Теория твердотельных приборов

Чистые полупроводники являются относительно хорошими диэлектриками по сравнению с металлами, хотя и не настолько хорошими, как настоящий диэлектрик, например, стекло. Чтобы быть полезным в полупроводниковых применениях, собственный полупроводник (чистый нелегированный полупроводник) должен иметь не более одного атома примеси на 10 миллиардов атомов полупроводника. Это аналогично крупинке соли в железнодорожном вагоне сахара. Нечистые, или грязные полупроводники являются значительно более проводящими, хотя и такими хорошими, как металлы. Почему так происходит? Чтобы ответить на этот вопрос, мы должны рассмотреть электронную структуру этих материалов на рисунке ниже.

Рисунок ниже (a) показывает 4 электрона в валентной оболочке полупроводника, образующих ковалентные связи с четырьмя другими атомами. Это плоская, более простая для рисования, версия рисунка, приведенного ранее. Все электроны атома связаны в четырех ковалентных связях, в парах общих электронов. Электроны не могут свободно перемещаться по кристаллической решетке. Таким образом, собственные, чистые, полупроводники являются относительно хорошими диэлектриками по сравнению с металлами.

собственный полупроводник
(a) Собственный полупроводник является диэлектриком, имеющим полную электронную оболочку.
(b) Тем не менее, тепловая энергия может создать несколько пар электрон-дырка, что в результате даст слабую проводимость.

Тепловая энергия иногда может освобождать электрон из кристаллической решетки, как показано на рисунке выше (b). Этому электрону становится доступно передвижение по кристаллической решетке. Когда электрон освобождается, он оставляет в кристаллической решетке пустое место с положительным зарядом, известное как дырка. Эта дырка не прикреплена к решетке и может свободно по ней перемещаться. Свободные электрон и дырка вносят свой вклад в движение электронов по кристаллической решетке. То есть, электрон свободен, пока он не попадает в дырку. Это явление называется рекомбинацией. При воздействии на полупроводник внешним электрическим полем электроны и дырки разводятся в противоположных направлениях. Увеличение температуры увеличит и количество электронов и дырок, что в свою очередь уменьшит сопротивление. Это противоположно поведению металлов, у которых сопротивление увеличивается с ростом температуры за счет увеличения столкновений электронов с кристаллической решеткой. Количество электронов и дырок в собственном полупроводнике одинаково. Тем не менее, оба носителя при воздействии внешнего поля необязательно будут двигаться с одинаковой скоростью. Другими словами, подвижность у электронов и дырок неодинакова.

Чистые полупроводники, сами по себе, не особенно полезны. Хотя полупроводники и должны быть в большой степени очищены от примесей для создания отправной точки перед добавлением определенных примесей.

В материал полупроводника, с долей содержания примесей 1 к 10 миллиардам, для увеличения количества носителей могут добавляться определенные примеси в соотношении примерно 1 часть на 10 миллионов. Добавление в полупроводник необходимой примеси известно, как легирование. Легирование увеличивает проводимость полупроводника, и, таким образом, он становится более сопоставим с металлом, а не с диэлектриком.

Можно увеличить количество отрицательно заряженных носителей в кристаллической решетке полупроводника путем легирования таким электронным донором, как фосфор. Электронные доноры, также известные, как примеси N-типа, включают в себя элементы группы VA (группы 15 по IUPAC) периодической таблицы: азот, фосфор, мышьяк и сурьма. Азот и фосфор являются примесью N-типа для алмаза. Фосфор, мышьяк и сурьма используются совместно с кремнием.

Кристаллическая решетка на рисунке ниже (b) содержит атомы, содержащие четыре электрона во внешней оболочке, формирующих ковалентные связи с соседними атомами. Эта кристаллическая решетка ожидаема. Добавление атома фосфора с пятью электронами во внешней оболочке вводит в решетку дополнительный электрон по сравнению с атомом кремния. Пятивалентная примесь образует четыре ковалентные связи с четырьмя атомами кремния с помощью четырех из пяти электронов, встраиваясь в решетку с одним электроном в запасе. Обратите внимание, что этот лишний электрон не сильно привязан к решетке, как электроны обычных атомов Si. Будучи не привязанным к узлу фосфора в кристаллической решетке, он свободен для перемещения по ней. Так как мы легировали одну часть фосфора на 10 миллионов атомов кремния, то по сравнению с многочисленными атомами кремния было создано лишь несколько свободных электронов. Тем не менее, по сравнению с немногочисленными парами электрон-дырка в собственном полупроводнике, в этом случае было создано достаточно много электронов.

легирование полупроводников
(a) Конфигурация электронов внешней оболочки донора N-типа фосфора, кремния (для сравнения) и акцептора P-типа бора.
(b) Примесь донора N-типа создает свободный электрон.
(c) Примесь акцептора P-типа создает дырку, положительно заряженный носитель.

Кроме того, можно вводить примеси, у которых, по сравнению с кремнием, не хватает электрона, то есть, которые имеют три электрона в валентной оболочке, по сравнению с кремнием с четырьмя валентными электронами. На рисунке выше (c) они оставляют пустое место, известное как дырка, положительно заряженный носитель. Атом бора пытается связаться с четырьмя атомами кремния, но в валентной зоне имеет только три электрона. В попытке сформировать четыре ковалентные связи три его электрона двигаются вокруг, пытаясь образовать четыре связи. Это заставляет двигаться появляющуюся дырку. Кроме того, трехвалентный атом может занимать электрон от соседнего (или более отдаленного) атома кремния, чтобы сформировать четыре ковалентные связи. Однако это оставляет атом кремния с нехваткой одного электрона. Другими словами, дырка перемещается к соседнему (или более отдаленному) атому кремния. Дырки располагаются в валентной зоне, уровнем ниже зоны проводимости. Легирование электронным акцептором, атомом, который может принять электрон, создает дефицит электронов и избыток дырок. Так как дырки являются носителями положительного заряда, примесь электронного акцептора также известна, как примесь P-типа. Легирующая примесь P-типа оставляет полупроводник с избытком дырок, носителей положительного заряда. Элементы P-типа из группы IIIA (группы 13 по IUPAC) периодической таблицы включают в себя: бор, алюминий, галлий и индий. Бор используется в качестве легирующей примеси P-типа для полупроводников кремний и алмаз, в то время как индий используется с германием.

Подобно «шарику в трубе» передвижение электронов (рисунок ниже) зависит от движения дырок и движения электронов. Шарик представляет собой электроны в проводнике, в трубе. Движение электронов слева направо в проводнике или полупроводнике N-типа объясняется входом электрона в трубу слева, заставляя выйти электрон справа. Передвижение электронов в полупроводнике N-типа происходит в зоне проводимости. Сравните это с движением дырок в валентной зоне.

движение электронов и дырок
Аналогия с шариком в трубе:
(a) Электроны двигаются вправо в зоне проводимости.
(b) Дырки двигаются вправо в валентной зоне, в то время как электроны двигаются влево.

Чтобы дырка вошла в левой части рисунка выше (b), электрон должен быть удален. При перемещении дырки слева направо электрон должен двигаться справа налево. Первый электрон выбрасывается из левого конца трубы, чтобы дырка могла двигаться вправо в трубу. Электрон двигается в направлении, противоположном движению положительных дырок. Чтобы дырка двигалась дальше вправо, электроны должны перемещаться влево, заполняя дырку. Дырка – это отсутствие электрона в валентной зоне за счет легирования P-типа. Она имеет локальный положительный заряд. Чтобы переместить дырку в заданном направлении, валентные электроны двигаются в противоположном направлении.

Поток электронов в полупроводнике N-типа аналогичен движению электронов в металлическом проводе. Атомы примеси N-типа дадут электроны, доступные для передвижения. Эти электроны из-за легирующей примеси известны, как основные носители, так как они находятся в большинстве, по сравнению с немногочисленными тепловыми дырками. Если к пластине полупроводника N-типа приложить электрическое поле (рисунок ниже (a)), электроны перейдут в отрицательный (левый) конец пластины, пройдут кристаллическую решетку и выйдут справа к клемме (+) батареи.

протекание тока в полупроводниках n и p типа
(a) Полупроводник N-типа с электронами, перемещающимися через кристаллическую решетку слева направо.
(b) Полупроводник P-типа с дырками, перемещающимися слева направо, что соответствует движению электронов в противоположном направлении.

Объяснить протекание тока в полупроводнике P-типа немного сложнее. Примесь P-типа, акцептор электронов, придает локальным областям положительный заряд, известный как дырки. Эти дырки и являются основными носителями в полупроводнике P-типа. Хотя дырки и образуются в местах трехвалентных атомов примеси, они могут перемещаться по пластине полупроводника. Обратите внимание, что включение батареи на рисунке выше (b) противоположно включению на рисунке (a). Положительный вывод батареи подключен к левому концу пластины P-типа. Поток электронов выходит из отрицательного вывода батареи и через пластину P-типа возвращается к положительному выводу батареи. Электрон покидает положительный (левый) конец пластины полупроводника, чтобы положительный вывод батареи оставил дырку в полупроводнике, которая может двигаться вправо. Дырки проходят через кристаллическую решетку слева направо. В отрицательном конце пластины электрон из батареи соединяется с дыркой, нейтрализуя её. Это дает возможность другой дырке в положительном конце пластины двигаться вправо. Имейте в виду, что когда дырки перемещаются слева направо, это на самом деле электроны двигаются в противоположном направлении, что и делает видимым движение дырок.

Элементы, используемые для производства полупроводников, приведены на рисунке ниже. Полупроводниковый материал германий из группы IVA (14 по IUPAC) сейчас используется довольно ограничено. Полупроводники на основе кремния составляют около 90% всего промышленного производства полупроводников. Полупроводники на основе алмаза сейчас широко исследуются и обладают значительным потенциалом. Составные полупроводники включают в себя кремний-германий (тонкие слои на пластинах Si), карбид кремния и соединения групп III-V, например, арсенид галлия. Полупроводниковые соединения групп III-VI включают в себя AlN, GaN, InN, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs и InxGa1-xAs. Столбцы II и VI периодической таблицы, не показанные на рисунке, также формируют составные полупроводники.

элементы полупроводников в периодической таблице
Группа IIIA – примеси P-типа, группа IV – основные полупроводниковые материалы, и группа VA – примеси N-типа.

Основной причиной включения групп IIIA и VA на рисунок выше является возможность показать примеси, используемые с группой полупроводников IVA. Элементы группы IIIA являются акцепторами, примесями P-типа, которые принимают электроны, оставляя дырки (положительные носители) в кристаллической решетке. Бор является примесью P-типа для алмаза и самой распространенной примесью для кремниевых полупроводников. Индий является примесью P-типа для германия.

Элементы группы VA являются донорами, примесями N-типа, дающими свободный электрон. Азот и фосфор подходят в качестве примеси N-типа для алмаза. Фосфор и мышьяк являются наиболее используемыми примесями N-типа для кремния, хотя может использоваться и сурьма.

Итоги

Собственные полупроводники, максимальная доля примеси в которых составляет 1 на 10 миллиардов, являются плохими проводниками.

Полупроводник N-типа легируется пятивалентной примесью, чтобы создать свободные электроны. Такой материал является проводящим. Электрон в нем является основным носителем.

Полупроводник P-типа, легированный трехвалентной примесью, имеет множество свободных дырок. Это носители положительного заряда. Материал P-типа является проводящим. Дырки в нем являются основными носителями.

Большинство полупроводников основаны на элементах из группы IVA периодической таблицы. Причем кремний является наиболее распространенным, германий устарел, а углерод (алмаз) в настоящее время исследуется.

Широко используются и составные полупроводники, такие как карбид кремния (группа IVA) и арсенид галлия (группа III-V).


На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.


Сообщить об ошибке